• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Por favor, ajude a simplificar

Por favor, ajude a simplificar

Mensagempor baril » Qua Set 28, 2011 22:32

De \sqrt\frac{x}{y} - \sqrt\frac{y}{x} \over \sqrt\frac{1}{x} - \sqrt\frac{1}{y}

Em \sqrt{x} + \sqrt{y}


Eu já tentei de tudo... até multiplicar em cima e baixo por \sqrt{x}\sqrt{y} mas não consigo enxergar e chegar a \sqrt{x} + \sqrt{y} . Alguém caridoso pode fazer e explicar em detalhes para eu entender por favor? Desde já imensamente agradecido.
baril
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Set 28, 2011 22:15
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Por favor, ajude a simplificar

Mensagempor LuizAquino » Qui Set 29, 2011 10:09

Considerando x e y números positivos e não nulos, temos a expressão:

\frac{\sqrt\frac{x}{y} - \sqrt\frac{y}{x}} { \sqrt\frac{1}{x} - \sqrt\frac{1}{y}}

Usando a propriedade \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}, ficamos com:

\frac{\frac{\sqrt{x}}{\sqrt{y}} -\frac{\sqrt{y}}{\sqrt{x}}} { \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}}}

Efetuando a subtração entre as frações, temos que:

\frac{\frac{x-y}{\sqrt{y}\sqrt{x}}}{\frac{\sqrt{y} - \sqrt{x}}{\sqrt{x}\sqrt{y}}}

Efetuando a divisão entre as frações, resulta em:

\frac{x-y}{\sqrt{y}-\sqrt{x}}

Multiplicando o numerador e o denominador por \sqrt{y} + \sqrt{x}, no final temos que:

-\left(\sqrt{x} + \sqrt{y}\right)

Reveja o seu gabarito, pois essa é a expressão correta.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)