• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria

Trigonometria

Mensagempor jorgeipu » Ter Set 27, 2011 08:57

Esta questão é do livro "MATEMÁTICA COMPLETA" de Giovanni e Bonjorno. (pág. 58 Q.09) - (UFMG) No triângulo ABC, o ângulo AbC é reto, BC= 5\sqrt[]{6} e cos(BÂC)= \frac{3}{\sqrt[]{15}}
Considerando esses dados, calcule o comprimento do cateto AB.

A resposta é pra ser AB=15. Já tentei resolver mas acho que falta alguma informação
jorgeipu
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Set 27, 2011 08:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Trigonometria

Mensagempor Renato_RJ » Ter Set 27, 2011 14:11

Vamos ver se posso lhe ajudar, campeão...

Seguinte, o cos(BÂC) = \frac{AB}{AC} \Rightarrow AC = \frac {AB}{cos(BÂC)}

Usando o teorema de Pitágoras (pois o triângulo é reto), temos:

AB^2 + BC^2 = AC^2

Logo temos:

AB^2 + 25*6 = AB^2 \cdot \frac{15}{9}

O que nos dá:

AB^2 - \frac{15}{9} \cdot AB^2 = -25*6  \Rightarrow 9 \cdot AB^2 - 15 \cdot AB^2 = - 25*6

Multiplicando ambos os lados por -1, para garantir medidas reais, temos:

15 \cdot AB^2 - 9 \cdot AB^2 = 25*6 \Rightarrow 6 \cdot AB^2 = 9*25*6 \Rightarrow AB^2 = 9*25 \Rightarrow AB = 3*5 = 15

Espero ter ajudado...

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Trigonometria

Mensagempor jorgeipu » Qua Set 28, 2011 11:52

Renato_RJ escreveu:Vamos ver se posso lhe ajudar, campeão...

Seguinte, o cos(BÂC) = \frac{AB}{AC} \Rightarrow AC = \frac {AB}{cos(BÂC)}

Usando o teorema de Pitágoras (pois o triângulo é reto), temos:

AB^2 + BC^2 = AC^2

Logo temos:

AB^2 + 25*6 = AB^2 \cdot \frac{15}{9}

O que nos dá:

AB^2 - \frac{15}{9} \cdot AB^2 = -25*6  \Rightarrow 9 \cdot AB^2 - 15 \cdot AB^2 = - 25*6

Multiplicando ambos os lados por -1, para garantir medidas reais, temos:

15 \cdot AB^2 - 9 \cdot AB^2 = 25*6 \Rightarrow 6 \cdot AB^2 = 9*25*6 \Rightarrow AB^2 = 9*25 \Rightarrow AB = 3*5 = 15

Espero ter ajudado...

[ ]'s
Renato.



Valeu irmão!!!
Ajudou e muito
Jorge Fernando
jorgeipu
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Set 27, 2011 08:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: