por caiofisico » Ter Set 27, 2011 18:38
To com uma duvida nesse exercício, acredito que a aplicação seja a regra da cadeia mais não enxergo como aplicar-la no exercício,
Sejam f e g duas funções tais que f(2) = 5, f ' (2)=1/2, g(0) = 2 e g ' (0) = 3. Determine a reta tangente ao gráfico de y = f(g(x)) em x = 0
valeu galeraa
-
caiofisico
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Sáb Ago 20, 2011 22:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Ter Set 27, 2011 19:35
caiofisico escreveu:Sejam f e g duas funções tais que f(2) = 5, f ' (2)=1/2, g(0) = 2 e g ' (0) = 3. Determine a reta tangente ao gráfico de y = f(g(x)) em x = 0
A reta tangente ao gráfico de f(g(x)) no ponto x = 0 será dada por:
![y - f(g(0)) = [f(g(0))]^\prime (x - 0) y - f(g(0)) = [f(g(0))]^\prime (x - 0)](/latexrender/pictures/23ab823ec9d986b728d66db93a597b04.png)
Além disso, aplicando a Regra da Cadeia sabemos que
![[f(g(0))]^\prime = f^\prime(g(0))g^\prime (0) [f(g(0))]^\prime = f^\prime(g(0))g^\prime (0)](/latexrender/pictures/a0f2cd1f60a49f731423f0ed06989811.png)
.
Agora basta aplicar os dados do exercício e você obtém a resposta. Por exemplo, note que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por caiofisico » Ter Set 27, 2011 21:12
opa brigadão, entendi, no caso adaptou a equação da reta tangente onde o y0 é f(g(0)) é o m é a derivada de F(g(0))
logo a equação ficaria +/- assim: y - 5 = 1/2 (x - 0) no caso o zero é tratado como x0
valeu amigão, tive mesmo a dificuldade de montar tudo, realmente olhando faz mto sentido o y0 tem que ser f(g(0)) já que x = 0
logo eu posso ate afirmar que os pontos sao (0, 5)
-
caiofisico
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Sáb Ago 20, 2011 22:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Ter Set 27, 2011 21:52
caiofisico escreveu:no caso adaptou a equação da reta tangente onde o y0 é f(g(0)) e o m é a derivada de f(g(0))
É por aí.
caiofisico escreveu:logo a equação ficaria +/- assim: y - 5 = 1/2 (x - 0) no caso o zero é tratado como x0
Reveja suas contas. Você errou o valor de
![[f(g(0))]^\prime [f(g(0))]^\prime](/latexrender/pictures/e47bec33df7a244eeb3c725ecd0a517b.png)
.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por caiofisico » Ter Set 27, 2011 22:02
sim sim no caso seria 3/2 me equivoquei na regra da cadeia ali

-
caiofisico
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Sáb Ago 20, 2011 22:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [CALCULO] reta tangente
por beel » Ter Out 04, 2011 22:30
- 4 Respostas
- 1549 Exibições
- Última mensagem por beel

Dom Out 09, 2011 13:57
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo I: Reta Tangente e Área da função.
por Jhonata » Ter Fev 26, 2013 12:47
- 1 Respostas
- 1351 Exibições
- Última mensagem por young_jedi

Sex Mar 01, 2013 22:22
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8535 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- [Reta Paralela à Reta Tangente]
por raimundoocjr » Qui Mai 30, 2013 18:44
- 0 Respostas
- 1093 Exibições
- Última mensagem por raimundoocjr

Qui Mai 30, 2013 18:44
Cálculo: Limites, Derivadas e Integrais
-
- Reta tangente
por AlbertoAM » Sáb Abr 30, 2011 15:32
- 1 Respostas
- 1415 Exibições
- Última mensagem por FilipeCaceres

Sáb Abr 30, 2011 19:13
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.