por JacquesPhilippe » Seg Set 26, 2011 19:33
O exercício
O interesse é provar esta necessidade. Mas fiquei preso. Alguém me pode ajudar? =/
-
JacquesPhilippe
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Ago 08, 2011 19:12
- Formação Escolar: EJA
- Andamento: cursando
por MarceloFantini » Seg Set 26, 2011 21:00
Vou provar a ida (

). Se A e B são simétricas, temos

,

e

. Daí, temos que

, logo A e B comutam.
Para a volta, você tem que

, e tem que concluir que

,

e

. Dica: se

, então

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por JacquesPhilippe » Ter Set 27, 2011 13:56
AH!!! Ok, a ida já percebi. Deveria de ter olhado com mais atenção para as propriedades das transpostas e das simétricas. A

estava mesmo à minha frente e não reparei. =/
A volta, não sei se está certo mas:

É assim? =|
-
JacquesPhilippe
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Ago 08, 2011 19:12
- Formação Escolar: EJA
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Matrizes simétricas
por oliveiramerika » Ter Dez 04, 2012 11:50
- 1 Respostas
- 1323 Exibições
- Última mensagem por e8group

Ter Dez 04, 2012 20:44
Álgebra Linear
-
- Exercicio com matrizes
por Nelito » Seg Nov 16, 2009 02:34
- 5 Respostas
- 4967 Exibições
- Última mensagem por elisonsevalho

Sex Mar 05, 2010 17:01
Matrizes e Determinantes
-
- preciso de ajuda para resolver um exercicio sobre matrizes
por anabela » Sáb Nov 14, 2009 09:09
- 7 Respostas
- 6993 Exibições
- Última mensagem por Nelito

Seg Nov 16, 2009 16:56
Matrizes e Determinantes
-
- [Matrizes invertíveis] e matrizes inversas
por JacquesPhilippe » Seg Ago 08, 2011 19:19
- 3 Respostas
- 4968 Exibições
- Última mensagem por LuizAquino

Qui Ago 11, 2011 19:43
Matrizes e Determinantes
-
- [Matrizes] produto de matrizes
por vanessafey » Dom Ago 28, 2011 16:54
- 1 Respostas
- 3478 Exibições
- Última mensagem por MarceloFantini

Dom Ago 28, 2011 17:35
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.