por Faby » Seg Set 19, 2011 10:55
Calcule a área:
O conjunto A delimitado pelos gráficos de

e

para
![x \in \left[0,2\pi \right] x \in \left[0,2\pi \right]](/latexrender/pictures/9521c4494f24fde7214e36e94c190d0d.png)
.
Resolução:
Já fiz o gráfico,
a fórmula a ser utilizada seria

??
Editado pela última vez por
Faby em Seg Set 19, 2011 11:08, em um total de 1 vez.
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 10:58
Faby,
Por favor, poste também suas tentativas e dúvidas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Faby » Ter Set 20, 2011 12:56
Pensei no seguinte:

Isso tudo seria

???
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Faby » Qua Set 21, 2011 01:52
...estava errando pq não tinha compreendido como "montar' a integral. Com o seu desenho o raciocínio foi mais fácil, obrigada
Calculei as integrais separadamente, e cheguei ao seguinte resultado
=(?2-2)+(?2-2)+1+|-1|+|-?2+2|+|-1|+|-1|+|1|=
=?2+1 u.a.
será que acertei?? ou devo calcular novamente...
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Qua Set 21, 2011 11:51
Faby escreveu:será que acertei?? ou devo calcular novamente...
Você ainda não acertou. Calcule novamente.
Por exemplo, note que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Faby » Qua Set 21, 2011 15:47
calculando novamente, cheguei ao seguinte resultado:
![(\sqrt[]{2}-1)+(\sqrt[]{2}-1)+ \left|-1 \right|+\left|-\sqrt[]{2}+1 \right|+\left|-\sqrt[]{2} +1\right|+\left|-1 \right|+1=4 \sqrt[]{2}-1 (\sqrt[]{2}-1)+(\sqrt[]{2}-1)+ \left|-1 \right|+\left|-\sqrt[]{2}+1 \right|+\left|-\sqrt[]{2} +1\right|+\left|-1 \right|+1=4 \sqrt[]{2}-1](/latexrender/pictures/b3f0e2a3191ce7f4cabc9cffc3f41b85.png)
E agora??
obrigada
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Faby » Qua Set 21, 2011 16:59
calculei, mas esqueci na hora de digitar
![(\sqrt[]{2}-1)+(\sqrt[]{2}-1)+1+ \left|-1 \right|+\left|-\sqrt[]{2}+1 \right|+\left|-\sqrt[]{2} +1\right|+\left|-1 \right|+1=4 \sqrt[]{2} (\sqrt[]{2}-1)+(\sqrt[]{2}-1)+1+ \left|-1 \right|+\left|-\sqrt[]{2}+1 \right|+\left|-\sqrt[]{2} +1\right|+\left|-1 \right|+1=4 \sqrt[]{2}](/latexrender/pictures/bb6f49300a906e041b7fa8e4aea901c3.png)
acertei??
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Qua Set 21, 2011 17:10
Faby escreveu:calculei, mas esqueci na hora de digitar
![(\sqrt[]{2}-1)+(\sqrt[]{2}-1)+1+ \left|-1 \right|+\left|-\sqrt[]{2}+1 \right|+\left|-\sqrt[]{2} +1\right|+\left|-1 \right|+1=4 \sqrt[]{2} (\sqrt[]{2}-1)+(\sqrt[]{2}-1)+1+ \left|-1 \right|+\left|-\sqrt[]{2}+1 \right|+\left|-\sqrt[]{2} +1\right|+\left|-1 \right|+1=4 \sqrt[]{2}](/latexrender/pictures/f2e50803799a827499473cbd761add84.png)
acertei??
Agora sim!
Aproveito ainda para indicar outra solução.
Analisando a simetria da figura, note que a área desejada também poderia ter sido calculada por:

Tente enxergar o porque disso analisando a figura.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Faby » Qua Set 21, 2011 17:37
...pq cada uma das integrais repetem 4 vezes...
nossa, com esta fórmula fica bem mais simplificada.
São muitas contas daquele jeito que fizemos, aí fica fácil de cometer erros.
Muito obrigada pela ajuda matemática!
Estou calculando a outra questão que eu postei.
teria como eu enviar arquivo do word, meu ombro tá reclamando, ou por imagem?
Até +
bjs
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Qua Set 21, 2011 18:03
Faby escreveu:Estou calculando a outra questão que eu postei.
teria como eu enviar arquivo do word, meu ombro tá reclamando, ou por imagem?
Não é recomendado que você poste a solução dessa forma (através de arquivo). Pois isso prejudica os sistemas de busca.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Cálculo de áreas por integrais
por Faby » Seg Set 19, 2011 10:50
- 9 Respostas
- 5980 Exibições
- Última mensagem por Faby

Qui Set 22, 2011 00:41
Cálculo: Limites, Derivadas e Integrais
-
- Integrais (áreas) [dúvida]
por citadp » Qua Jun 20, 2012 11:21
- 4 Respostas
- 2942 Exibições
- Última mensagem por Russman

Qui Jun 21, 2012 10:58
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de Áreas utilizando integrais
por Rambox » Ter Jun 14, 2011 14:38
- 2 Respostas
- 2062 Exibições
- Última mensagem por Rambox

Ter Jun 14, 2011 14:54
Cálculo: Limites, Derivadas e Integrais
-
- Interseção entre áreas (Integrais)
por thejotta » Seg Abr 30, 2018 16:52
- 3 Respostas
- 10968 Exibições
- Última mensagem por Gebe

Ter Mai 01, 2018 22:51
Cálculo: Limites, Derivadas e Integrais
-
- Integrais
por pseytow » Qui Nov 27, 2008 21:54
- 1 Respostas
- 2696 Exibições
- Última mensagem por Adriano Tavares

Qui Mar 10, 2011 01:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.