por maykonnunes » Seg Set 19, 2011 11:07
Suponha que a quantidade de petróleo bombeada de um poço, diminui a uma taxa contínua de 10% por ano. Quando a produçãao do poço atingirá um quinto de seu valor atual? (Resolva usando EDO)
Estou sem idéia de inicio acho que me falta interpretação
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 11:21
maykonnunes escreveu:Suponha que a quantidade de petróleo bombeada de um poço, diminui a uma taxa contínua de 10% por ano. (...)
Seja P(t) a quantidade de petróleo no tempo t. Desse modo, temos que:

maykonnunes escreveu:(...) Quando a produçãao do poço atingirá um quinto de seu valor atual?
Suponha que

. Você deseja calcular o tempo
t tal que

.
maykonnunes escreveu:Estou sem idéia de inicio acho que me falta interpretação
De fato, interpretação foi o que faltou.

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por maykonnunes » Seg Set 19, 2011 12:45
LuizAquino, de f ( y) y ' = g(x) , usando a forma dy/dx=y´ segue que f ( y)dy = g(x)dx
não estou conseguindo identificar os termos para integrar
se puder dar mais uma mão fico agradecido.
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por maykonnunes » Ter Set 20, 2011 15:08
Luiz, bom acho que entedi algumas coisas, se eu pensar em uma PG onde primerio termo Po razao 0,9

, então P é constante

é a váriavel, mas não consigo colocar está ideia em EDO.
Ou seja a ideia é assim:
ai basta resolver a integral??
e fazer

??
encontro a solução??
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Ter Set 20, 2011 18:37
Não necessariamente é uma progressão geométrica. Resolva a integral e use as informações que o colega Luiz Aquino te indicou.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por maykonnunes » Ter Set 20, 2011 19:33
"LuizAquino disse
Note que:

Bom resolvendo tenho:

proximo passo??
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Ter Set 20, 2011 19:40
Não se esqueça da constante.

. Lembre-se que

, que é a quantidade inicial. Depois disso, faça

e encontre t.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por maykonnunes » Qua Set 21, 2011 00:13
Segundo meu tutor

ai fica

, ai então

que:

ai daqui para frente não consigo mais solucionar
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PA (não sei resolver)
por Bruninha » Qua Mar 04, 2009 19:00
- 2 Respostas
- 5668 Exibições
- Última mensagem por ivolatanza

Sex Mar 06, 2009 23:37
Progressões
-
- Resolver a equação
por thadeu » Dom Nov 22, 2009 23:01
- 0 Respostas
- 764 Exibições
- Última mensagem por thadeu

Dom Nov 22, 2009 23:01
Álgebra Elementar
-
- Como resolver
por thyssa » Ter Abr 19, 2011 22:06
- 1 Respostas
- 2784 Exibições
- Última mensagem por FilipeCaceres

Ter Abr 19, 2011 23:31
Progressões
-
- Como Resolver.
por 380625 » Dom Set 11, 2011 14:36
- 1 Respostas
- 1751 Exibições
- Última mensagem por MarceloFantini

Dom Set 11, 2011 19:40
Matrizes e Determinantes
-
- Como resolver!!
por MW2 » Qui Jan 05, 2012 16:44
- 1 Respostas
- 1779 Exibições
- Última mensagem por Arkanus Darondra

Qui Jan 05, 2012 18:41
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.