por maykonnunes » Seg Set 19, 2011 11:07
Suponha que a quantidade de petróleo bombeada de um poço, diminui a uma taxa contínua de 10% por ano. Quando a produçãao do poço atingirá um quinto de seu valor atual? (Resolva usando EDO)
Estou sem idéia de inicio acho que me falta interpretação
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 11:21
maykonnunes escreveu:Suponha que a quantidade de petróleo bombeada de um poço, diminui a uma taxa contínua de 10% por ano. (...)
Seja P(t) a quantidade de petróleo no tempo t. Desse modo, temos que:

maykonnunes escreveu:(...) Quando a produçãao do poço atingirá um quinto de seu valor atual?
Suponha que

. Você deseja calcular o tempo
t tal que

.
maykonnunes escreveu:Estou sem idéia de inicio acho que me falta interpretação
De fato, interpretação foi o que faltou.

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por maykonnunes » Seg Set 19, 2011 12:45
LuizAquino, de f ( y) y ' = g(x) , usando a forma dy/dx=y´ segue que f ( y)dy = g(x)dx
não estou conseguindo identificar os termos para integrar
se puder dar mais uma mão fico agradecido.
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por maykonnunes » Ter Set 20, 2011 15:08
Luiz, bom acho que entedi algumas coisas, se eu pensar em uma PG onde primerio termo Po razao 0,9

, então P é constante

é a váriavel, mas não consigo colocar está ideia em EDO.
Ou seja a ideia é assim:
ai basta resolver a integral??
e fazer

??
encontro a solução??
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Ter Set 20, 2011 18:37
Não necessariamente é uma progressão geométrica. Resolva a integral e use as informações que o colega Luiz Aquino te indicou.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por maykonnunes » Ter Set 20, 2011 19:33
"LuizAquino disse
Note que:

Bom resolvendo tenho:

proximo passo??
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Ter Set 20, 2011 19:40
Não se esqueça da constante.

. Lembre-se que

, que é a quantidade inicial. Depois disso, faça

e encontre t.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por maykonnunes » Qua Set 21, 2011 00:13
Segundo meu tutor

ai fica

, ai então

que:

ai daqui para frente não consigo mais solucionar
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PA (não sei resolver)
por Bruninha » Qua Mar 04, 2009 19:00
- 2 Respostas
- 5668 Exibições
- Última mensagem por ivolatanza

Sex Mar 06, 2009 23:37
Progressões
-
- Resolver a equação
por thadeu » Dom Nov 22, 2009 23:01
- 0 Respostas
- 764 Exibições
- Última mensagem por thadeu

Dom Nov 22, 2009 23:01
Álgebra Elementar
-
- Como resolver
por thyssa » Ter Abr 19, 2011 22:06
- 1 Respostas
- 2784 Exibições
- Última mensagem por FilipeCaceres

Ter Abr 19, 2011 23:31
Progressões
-
- Como Resolver.
por 380625 » Dom Set 11, 2011 14:36
- 1 Respostas
- 1751 Exibições
- Última mensagem por MarceloFantini

Dom Set 11, 2011 19:40
Matrizes e Determinantes
-
- Como resolver!!
por MW2 » Qui Jan 05, 2012 16:44
- 1 Respostas
- 1779 Exibições
- Última mensagem por Arkanus Darondra

Qui Jan 05, 2012 18:41
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.