• Anúncio Global
    Respostas
    Exibições
    Última mensagem

assintota

assintota

Mensagempor DyegoBrum » Seg Set 19, 2011 13:30

achar as assintotas verticais e horizontais e esboçar? o grafico....

f{x}=-3x/raiz de x^2-3

nao consigo achar a resposta nem um meio de chegar nela,,eu acho assistota vertical raiz de 3 mas a resposta e 3.

vlw pessoal
DyegoBrum
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Set 19, 2011 12:55
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia de produção
Andamento: cursando

Re: assintota

Mensagempor LuizAquino » Seg Set 19, 2011 17:21

Você tem a função f(x) = -\frac{3x}{\sqrt{x^2 - 3}} .

Dizemos que a reta x = c é uma assíntota vertical do gráfico da função f se qualquer um dos três limites abaixo ocorre:
(i) \lim_{x\to c^-} f(x) = \infty

(ii) \lim_{x\to c^+} f(x) = \infty

(iii) \lim_{x\to c} f(x) = \infty

Obs 1.: Obviamente, quando (iii) ocorre temos que (i) e (ii) ocorrem.
Obs 2.: O símbolo \infty aqui nesse caso pode representar tanto -\infty quanto +\infty .

Voltando a função, note que:
\lim_{x\to \sqrt{3}} -\frac{3x}{\sqrt{x^2 - 3}} = \lim_{x\to \sqrt{3}} -3x \lim_{x \to \sqrt{3}} \frac{1}{\sqrt{x^2 - 3}} = -3\sqrt{3}\cdot (+\infty) = -\infty

\lim_{x\to -\sqrt{3}} -\frac{3x}{\sqrt{x^2 - 3}} = \lim_{x\to -\sqrt{3}} -3x \lim_{x \to -\sqrt{3}} \frac{1}{\sqrt{x^2 - 3}} = 3\sqrt{3}\cdot (+\infty) = +\infty

Portanto, as retas x = \sqrt{3} e x = -\sqrt{3} são assíntotas verticais do gráfico de f.

Em relação à assíntota horizontal, dizemos que a reta y = c é uma assíntota horizontal do gráfico de f se o limite abaixo ocorre:

(i) \lim_{x \to \infty} f(x) = c

Obs 3.: Novamente, o símbolo \infty aqui nesse caso pode representar tanto -\infty quanto +\infty .

Voltando a função, note que:
\lim_{x\to + \infty} -\frac{3x}{\sqrt{x^2 - 3}} = \lim_{x\to + \infty} -\frac{3}{\frac{\sqrt{x^2 - 3}}{x}} = \lim_{x\to + \infty} -\frac{3}{\sqrt{1 - \frac{3}{x^2}}} = -3

Por outro lado, temos que calcular:
\lim_{x\to - \infty} -\frac{3x}{\sqrt{x^2 - 3}}

Como x é um número negativo (já que x está tendendo para -\infty), podemos reescrever esse limite como:
\lim_{x\to - \infty} -\frac{3x}{\sqrt{x^2 - 3}} = \lim_{x\to + \infty} -\frac{3(-x)}{\sqrt{(-x)^2 - 3}} = \lim_{x\to + \infty} \frac{3x}{\sqrt{x^2 - 3}}

Resolvendo esse último limite como fizemos anteriormente, podemos dizer no final que:
\lim_{x\to - \infty} -\frac{3x}{\sqrt{x^2 - 3}} = 3

Portanto, as retas y = 3 e y = -3 são assíntotas horizontais do gráfico de f.

Agora tente terminar o exercício.

Observação
Procure usar o LaTeX para escrever as notações matemáticas. Para saber como proceder, leia o tópico:
DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74

Se precisar, então use também o Editor de Fórmulas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: assintota

Mensagempor DyegoBrum » Qua Set 21, 2011 15:09

vlw aquino salvou o dia,obrigado pelo obs
DyegoBrum
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Set 19, 2011 12:55
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia de produção
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.