• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema da teoria dos conjuntos

problema da teoria dos conjuntos

Mensagempor andregoulart » Seg Mar 09, 2009 15:53

Numa pesquisa de intenção de votos, em que as pessoas deveriam responder sim ou não, foram feitas as seguintes perguntas;
1) Voce votou no atual prefeito?
2) Se o atual prefeito fosse candidato à reeleição, não votaria nele?

Nenhuma pergunta ficou sem resposta, 30 pessoas responderam sim as duas questões, 60 responderam não a primeira questão, 80 responderam não a segunda questão e 130 disseram sim a uma questão, ao menos. O número de pessoas entrevistadas foi de?


RESPOSTA: 150

Tentei fazer pelo diagrama de Venn e pela fórmula n(AUB)= N(A)+ N(B)- N(AUB) e até cheguei na resposta, mais não convenceu e preciso de uma resolução melhor. Alguém pode me ajudar nas dicas????
andregoulart
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 09, 2009 15:08
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: problema da teoria dos conjuntos

Mensagempor Marcampucio » Sex Mar 13, 2009 17:04

Cheguei a uma solução usando o diagrama de Venn separado para o sim e o não:
Imagem

x+y+30=130
x+y=100\,\,(I)

y+z=60\,\,(II)
z+x=80\,\,(III)

(III)-(II)\rightarrow x-y=20\,\,(IV)

de (I) e (IV) vem x=60,\,\,y=40 e logo z=20

x+y+z+30=150
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: problema da teoria dos conjuntos

Mensagempor andregoulart » Sex Mar 13, 2009 17:16

Se separarmos pelo diagrama de VENN em sim ou não, temos que.

30 pessoas responderam sim as duas questões e 130 sim a uma questão ao menos.
pergunta 1- x pergunta 2-y, portanto X+y+30= 130 e x+y= 100 (1)

Por outro lado
60 responderam não a primeira questão (y) e 80 não a segunda questão(x) e z não a ambas as questões, assim

x+z= 80 y+z=60 , resolvendo o sistema , temos que x-y=20 e fazendo o sistema com x+y=100 (1) , encontramos x=60, y=40, z=20
Então,

x+y+z+30= 60+40+20+30= 150 entrevistados.
andregoulart
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 09, 2009 15:08
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?