• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Determinantes] Inversão de Matrizes

[Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sex Set 02, 2011 22:52

Baixei uma apostila do cursinho da UFSC e não consigo resolver esta inversão de matrizes. O gabarito apresenta a resposta(-48) e eu sempre encontro 0.

determinantes.png
determinantes.png (4.89 KiB) Exibido 3497 vezes


Comecei da seguinte forma:

2|+M_1_1 |-3|-M_1_2 |+4|+M_1_3 |
Editado pela última vez por vanessafey em Sáb Set 03, 2011 00:21, em um total de 1 vez.
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor MarceloFantini » Sáb Set 03, 2011 00:03

Vanessa, não entendo seu desenvolvimento. Pode explicar um pouco mais?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 00:12

Desculpe-me postei o anexo errado, lógico que fica incompreensível...

determinantes.png
determinantes.png (4.89 KiB) Exibido 3500 vezes


Tentei resolver por cofator relativo à primeira linha.
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 16:18

Ainda não consegui responder a questão...

Segue o meu raciocínio... usando Cofator em função da primeira linha...

|A|=2aA_1_1+ (-3c) A_1_2+4hA_1_3
|A|=2|+M_1_1 |+ (-3c)|-M_1_2 |+4h|+M_1_3 |
|A|=2(-12+12)+3(8-8)+4(-6+6)=0
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor MarceloFantini » Sáb Set 03, 2011 16:27

Não é necessário calcular o determinante. Lembre-se que determinante é uma função que tem a propriedade de que se uma constante multiplica uma linha ou coluna inteira, podemos multiplicar o determinante inteiro por essa constante. Assim, seja A essa matriz. Sabemos \det A = 2. Com a nova matriz A', temos que \det A' = 2 \cdot (-3) \cdot 4 \cdot \det A = -24 \cdot \det A = -48
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 16:35

Muito obrigada! Nessas horas eu percebo como consigo complicar algo simples!

Vou continuar os exercícios...
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.