por matmatco » Qui Set 01, 2011 11:04
olá, estou com dificuldade em resolver esse limite:
( lembrando o x está tendendo a zero)tentei dividir tudo por senax+senbx mas não consegui, tentei fazendo

mas não consegui sair disso alguem me explique como resolver obrigado.
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
por LuizAquino » Qui Set 01, 2011 12:34
DicasEu presumo que a ideia seja resolver esse limite
sem usar a Regra de L'Hospital. Para isso, comece usando as sugestões abaixo.
No numerador escreva

.
Já no denominador, use a identidade trigonométrica

.
Em seguida, tente dividir o numerador e o denominador por uma expressão de modo a fazer aparecer o limite trigonométrico fundamental.
Além disso, veja as ideias discutidas no tópico abaixo. Você vai precisar aplicar uma estratégia semelhante.
[limite] Ajuda com limite!viewtopic.php?f=120&t=5769#p19973Tente terminar o exercício. Se você não conseguir, poste aqui até onde você conseguiu desenvolver com essas dicas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por matmatco » Qui Set 01, 2011 16:12
usei a identidade e encontrei uma resposta igual a 2, ai voltando ao limite ficou
x está tendendo a zero
=

=

ai fiquei com duvida se eu posso fazer esses dois ultimos passos ...
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
por LuizAquino » Qui Set 01, 2011 17:13
matmatco escreveu:usei a identidade e encontrei uma resposta igual a 2, ai voltando ao limite ficou
Não fica somente isso.
Nós temos que:
![\lim_{x\to 0}\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{\textrm{sen}\,ax - \,\textrm{sen}\,bx} = \lim_{x\to 0}\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{2\,\textrm{sen}\,\left[\frac{(a-b)x}{2}\right]\cos\left[\frac{(a+b)x}{2}\right]} \lim_{x\to 0}\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{\textrm{sen}\,ax - \,\textrm{sen}\,bx} = \lim_{x\to 0}\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{2\,\textrm{sen}\,\left[\frac{(a-b)x}{2}\right]\cos\left[\frac{(a+b)x}{2}\right]}](/latexrender/pictures/e7c8ff071ee7b218a291aaf66a12f15c.png)
Dividindo o numerador e o denominador por

(lembrando que devemos ter

), ficamos com
![\lim_{x\to 0}\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{\textrm{sen}\,ax - \,\textrm{sen}\,bx} = \lim_{x\to 0}\frac{\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{\frac{(a-b)x}{2}}}{\frac{2\,\textrm{sen}\,\left[\frac{(a-b)x}{2}\right]\cos\left[\frac{(a+b)x}{2}\right]}{\frac{(a-b)x}{2}}} = \frac{1}{a-b} \lim_{x\to 0}\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{x} \lim_{x\to 0}\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{\textrm{sen}\,ax - \,\textrm{sen}\,bx} = \lim_{x\to 0}\frac{\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{\frac{(a-b)x}{2}}}{\frac{2\,\textrm{sen}\,\left[\frac{(a-b)x}{2}\right]\cos\left[\frac{(a+b)x}{2}\right]}{\frac{(a-b)x}{2}}} = \frac{1}{a-b} \lim_{x\to 0}\frac{({e}^{ax} - 1) - ({e}^{bx} - 1)}{x}](/latexrender/pictures/2d09537aeb33be1ee013e4e7d41ad30f.png)
Podemos então escrever que:

Para continuar a resolução, veja a estratégia usada no
tópico que indiquei acima.
Observação 1Para inserir o "x tendendo a zero" no limite, use o comando LaTeX:
- Código: Selecionar todos
x \to 0
O resultado desse comando é:

.
Ou seja, para ter algo como

, usamos o comando LaTeX:
- Código: Selecionar todos
\lim_{x\to a} f(x)
Observação 2Vale lembrar também que
é falsa a equação:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por nietzsche » Sex Set 02, 2011 00:34
luiz,
se a= 0 a observação 2 é correta.
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Sex Set 02, 2011 08:30
nietzsche escreveu:luiz,
se a= 0 a observação 2 é correta.
De fato. Mas vale lembrar que apenas para x diferente de zero. Note que se a = x = 0 teríamos uma operação inválida no segundo membro.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por matmatco » Qui Set 08, 2011 10:19
olá,
encontrei uma maneira mais facil e rapida de resolver , se dividir tudo por x encontramos direto a parte

ae já está resolvido o problema
obs: postarei a resolução completa na proxima
obrigado pela ajuda abraços
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limite fundamental]
por TheKyabu » Qui Out 25, 2012 18:33
- 1 Respostas
- 1633 Exibições
- Última mensagem por TheKyabu

Qui Out 25, 2012 18:50
Cálculo: Limites, Derivadas e Integrais
-
- Limite fundamental
por Julia Maia » Seg Abr 25, 2016 14:17
- 0 Respostas
- 2023 Exibições
- Última mensagem por Julia Maia

Seg Abr 25, 2016 14:17
Cálculo: Limites, Derivadas e Integrais
-
- Limite Fundamental
por Everton Pire Souza » Dom Abr 30, 2017 23:58
- 0 Respostas
- 2890 Exibições
- Última mensagem por Everton Pire Souza

Dom Abr 30, 2017 23:58
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE]LIMITE FUNDAMENTAL EXPONENCIAL
por beel » Sáb Set 03, 2011 22:11
- 3 Respostas
- 2277 Exibições
- Última mensagem por beel

Dom Set 04, 2011 17:25
Cálculo: Limites, Derivadas e Integrais
-
- Limite fundamental Trigonometrico
por fabioengcomp » Sáb Abr 16, 2011 12:31
- 2 Respostas
- 2060 Exibições
- Última mensagem por Molina

Sáb Abr 16, 2011 20:39
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.