• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[raíz quadrada] Dificuldade com raízes quadradas..

[raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 21:39

Boa noite.

Medi o lado de um mesmo triângulo através de duas maneiras diferentes, e cheguei a dois resultados distintos(que acredito que sejam iguais).

\frac{4\sqrt[2]{3}}{3} e \sqrt[2]{\frac{16}{3}}

Alguém pode me provar que ambas equações são iguais? Ou como fatorar \sqrt[2]{\frac{16}{3}} para chegar em \frac{4\sqrt[2]{3}}{3} ? Muito obrigado!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor Caradoc » Ter Ago 30, 2011 22:04

Sim, são quantidades iguais.

\sqrt \frac{16}{3}= \sqrt \frac{4^2}{3} = \frac{4}{\sqrt 3}

Daí racionalizando:

\frac{4}{\sqrt 3} \cdot \frac{\sqrt 3}{\sqrt 3} =  \frac{4\sqrt 3}{3}
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 22:09

Obrigado pela resposta! Outra pergunta: \sqrt[2]{\frac{16}{3}} = 4\sqrt[2]{\frac{1}{3}} certo? A partir desse ultimo numero, como vc racionalizaria a raíz quadrada fracionária? Obrigado novamente.
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 22:14

e uma ultima pergunta, desculpe, mas ajudaria terminar com minhas duvidas:

4\sqrt[2]{\frac{1}{3}} é igual a \frac{4}{\sqrt[2]{3}}?

obrigado
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor Caradoc » Ter Ago 30, 2011 22:30

Existe uma propriedade dos radicais que diz: "o radical de um quociente é igual ao quociente dos radicais"

Assim:

\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}

Daí que vem minha simplificação.

Por isso 4\sqrt[2]{\frac{1}{3}} é igual a \frac{4}{\sqrt[2]{3}}.
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Qua Ago 31, 2011 15:18

Entendido. Agradecidíssimo!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Conversão de Unidades

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59