• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[raíz quadrada] Dificuldade com raízes quadradas..

[raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 21:39

Boa noite.

Medi o lado de um mesmo triângulo através de duas maneiras diferentes, e cheguei a dois resultados distintos(que acredito que sejam iguais).

\frac{4\sqrt[2]{3}}{3} e \sqrt[2]{\frac{16}{3}}

Alguém pode me provar que ambas equações são iguais? Ou como fatorar \sqrt[2]{\frac{16}{3}} para chegar em \frac{4\sqrt[2]{3}}{3} ? Muito obrigado!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor Caradoc » Ter Ago 30, 2011 22:04

Sim, são quantidades iguais.

\sqrt \frac{16}{3}= \sqrt \frac{4^2}{3} = \frac{4}{\sqrt 3}

Daí racionalizando:

\frac{4}{\sqrt 3} \cdot \frac{\sqrt 3}{\sqrt 3} =  \frac{4\sqrt 3}{3}
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 22:09

Obrigado pela resposta! Outra pergunta: \sqrt[2]{\frac{16}{3}} = 4\sqrt[2]{\frac{1}{3}} certo? A partir desse ultimo numero, como vc racionalizaria a raíz quadrada fracionária? Obrigado novamente.
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 22:14

e uma ultima pergunta, desculpe, mas ajudaria terminar com minhas duvidas:

4\sqrt[2]{\frac{1}{3}} é igual a \frac{4}{\sqrt[2]{3}}?

obrigado
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor Caradoc » Ter Ago 30, 2011 22:30

Existe uma propriedade dos radicais que diz: "o radical de um quociente é igual ao quociente dos radicais"

Assim:

\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}

Daí que vem minha simplificação.

Por isso 4\sqrt[2]{\frac{1}{3}} é igual a \frac{4}{\sqrt[2]{3}}.
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Qua Ago 31, 2011 15:18

Entendido. Agradecidíssimo!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Conversão de Unidades

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.