• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[raíz quadrada] Dificuldade com raízes quadradas..

[raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 21:39

Boa noite.

Medi o lado de um mesmo triângulo através de duas maneiras diferentes, e cheguei a dois resultados distintos(que acredito que sejam iguais).

\frac{4\sqrt[2]{3}}{3} e \sqrt[2]{\frac{16}{3}}

Alguém pode me provar que ambas equações são iguais? Ou como fatorar \sqrt[2]{\frac{16}{3}} para chegar em \frac{4\sqrt[2]{3}}{3} ? Muito obrigado!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor Caradoc » Ter Ago 30, 2011 22:04

Sim, são quantidades iguais.

\sqrt \frac{16}{3}= \sqrt \frac{4^2}{3} = \frac{4}{\sqrt 3}

Daí racionalizando:

\frac{4}{\sqrt 3} \cdot \frac{\sqrt 3}{\sqrt 3} =  \frac{4\sqrt 3}{3}
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 22:09

Obrigado pela resposta! Outra pergunta: \sqrt[2]{\frac{16}{3}} = 4\sqrt[2]{\frac{1}{3}} certo? A partir desse ultimo numero, como vc racionalizaria a raíz quadrada fracionária? Obrigado novamente.
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Ter Ago 30, 2011 22:14

e uma ultima pergunta, desculpe, mas ajudaria terminar com minhas duvidas:

4\sqrt[2]{\frac{1}{3}} é igual a \frac{4}{\sqrt[2]{3}}?

obrigado
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor Caradoc » Ter Ago 30, 2011 22:30

Existe uma propriedade dos radicais que diz: "o radical de um quociente é igual ao quociente dos radicais"

Assim:

\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}

Daí que vem minha simplificação.

Por isso 4\sqrt[2]{\frac{1}{3}} é igual a \frac{4}{\sqrt[2]{3}}.
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [raíz quadrada] Dificuldade com raízes quadradas..

Mensagempor lucas7 » Qua Ago 31, 2011 15:18

Entendido. Agradecidíssimo!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Conversão de Unidades

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.