por 380625 » Sáb Ago 20, 2011 16:19
Como aplicar o metodo de gauss jordan no seguinte exercicio:
Discutir os seguintes sistemas lineares ( em função de a):
x + y - az = 0 ax + 2y = 6
ax + y - z = 2 - a e 3x - y = -2
x + ay - z = -a x + y = 0
não consigo escalonar a matriz quando ela esta nesse modelo.
Obrigado
Flávio Santana.
-
380625
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sex Fev 18, 2011 17:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Dom Ago 28, 2011 00:50
Por favor, use o LaTeX para digitar os sistemas.
Por exemplo, o comando LaTeX abaixo cria o primeiro sistema:
- Código: Selecionar todos
[tex]
\begin{cases}
x + y - az = 0 \\
ax + y - z = 2 - a \\
x + ay - z = -a
\end{cases}
[/tex]
O resultado do comando é:

380625 escreveu:não consigo escalonar a matriz quando ela esta nesse modelo.
Qual é exatamente a sua dúvida?
A matriz estendida do sistema é:

Para zerarmos, por exemplo, o termo
a que aparece na segunda linha e primeira coluna, basta fazer a operação

. Desse modo ficamos com:

Agora basta continuar com essa ideia.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por 380625 » Dom Ago 28, 2011 15:01
Seguindo a idéia que vc começou chego na seguinte matriz
1 1 -a 0
0 1 1 -a/a-1
0 0 a^2 + a - 2 2 - 2a
Agora o que tenho que fazer achar o valor de a, para isso usei a expressão:
a^2 + a - 2 = 0 e encontrei
a = -2 e a = 1
Discutindo o sistema temos que:
Se a = 1 ou a = -2 Sistema Imcompativel
Se a diferente de 1 e diferente de - 2 Sistema Compativel e Determinado.
Esta correto a minha informação.
Pq tenho uma duvida.
Se a = 1 temos que a linha 3 sera constituidas de zero isso me deixa confuso.
Ficaria grato com a ajuda. Desculpa mais ainda não sei usar o TEx mas ja começei ler alguns coisas sobre.
Flávio Santana.
-
380625
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sex Fev 18, 2011 17:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Dom Ago 28, 2011 22:26
380625 escreveu:Seguindo a idéia que vc começou chego na seguinte matriz
1 1 -a 0
0 1 1 -a/a-1
0 0 a^2 + a - 2 2 - 2a
Considere as seguintes operações na matriz estendida original:
Isso produz a matriz:

380625 escreveu:Agora o que tenho que fazer achar o valor de a, para isso usei a expressão:
a^2 + a - 2 = 0 e encontrei
a = -2 e a = 1
Na verdade, você deveria analisar duas equações:

e

.
Mas, acontece que nesse exercício essas duas equações tem uma solução em comum (que é a = 1). Sendo assim, no final haverá apenas dois valores que zeram o determinante da matriz dos coeficientes, que seriam a = -2 e a = 1.
380625 escreveu:Discutindo o sistema temos que:
Se a = 1 ou a = -2 Sistema Imcompativel
Cuidado! Mesmo quando a matriz dos coeficientes tem determinante nulo, o sistema pode ter solução. Por exemplo, ele poderá ser compatível e indeterminado. Você precisa substituir cada um dos valores de a e verificar se isso acontece.
380625 escreveu:Se a diferente de 1 e diferente de - 2 Sistema Compativel e Determinado.
Ok.
380625 escreveu:Se a = 1 temos que a linha 3 sera constituidas de zero isso me deixa confuso.
Qual é a confusão? Se a = 1, teremos a matriz:

Observando a segunda linha, veja que o sistema é incompatível.
380625 escreveu:Desculpa mais ainda não sei usar o TEx mas ja começei ler alguns coisas sobre.
Procure fazer um esforço para aprender a digitar as matrizes usando o LaTeX. A forma como você está digitando não é adequada.
Veja que para digitar, por exemplo, uma matriz 3 por 3, basta usar o comando:
- Código: Selecionar todos
[tex]
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
[/tex]
O resultado desse comando é:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Método de Gauss Jordan
por Claudin » Sex Ago 26, 2011 03:00
- 2 Respostas
- 4642 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 22:51
Álgebra Elementar
-
- Método de de Gauss-Jordan
por AmandaPmend » Seg Nov 10, 2014 14:46
- 1 Respostas
- 3414 Exibições
- Última mensagem por adauto martins

Ter Nov 11, 2014 14:51
Álgebra Linear
-
- Metodo de Gauss Jordan em Matriz 4x4 (Dificil)
por Rhyu » Sex Abr 06, 2012 17:26
- 1 Respostas
- 18385 Exibições
- Última mensagem por LuizAquino

Sex Abr 06, 2012 21:31
Matrizes e Determinantes
-
- Resolução de sistemas (método de Gauss-Jordan)
por Danilo » Qua Nov 28, 2012 20:08
- 1 Respostas
- 3004 Exibições
- Última mensagem por e8group

Qua Nov 28, 2012 20:42
Sistemas de Equações
-
- Eliminação Gauss Jordan
por kassya » Ter Abr 22, 2014 16:54
- 0 Respostas
- 2565 Exibições
- Última mensagem por kassya

Ter Abr 22, 2014 16:54
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.