por 380625 » Sáb Ago 20, 2011 16:19
Como aplicar o metodo de gauss jordan no seguinte exercicio:
Discutir os seguintes sistemas lineares ( em função de a):
x + y - az = 0 ax + 2y = 6
ax + y - z = 2 - a e 3x - y = -2
x + ay - z = -a x + y = 0
não consigo escalonar a matriz quando ela esta nesse modelo.
Obrigado
Flávio Santana.
-
380625
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sex Fev 18, 2011 17:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Dom Ago 28, 2011 00:50
Por favor, use o LaTeX para digitar os sistemas.
Por exemplo, o comando LaTeX abaixo cria o primeiro sistema:
- Código: Selecionar todos
[tex]
\begin{cases}
x + y - az = 0 \\
ax + y - z = 2 - a \\
x + ay - z = -a
\end{cases}
[/tex]
O resultado do comando é:

380625 escreveu:não consigo escalonar a matriz quando ela esta nesse modelo.
Qual é exatamente a sua dúvida?
A matriz estendida do sistema é:

Para zerarmos, por exemplo, o termo
a que aparece na segunda linha e primeira coluna, basta fazer a operação

. Desse modo ficamos com:

Agora basta continuar com essa ideia.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por 380625 » Dom Ago 28, 2011 15:01
Seguindo a idéia que vc começou chego na seguinte matriz
1 1 -a 0
0 1 1 -a/a-1
0 0 a^2 + a - 2 2 - 2a
Agora o que tenho que fazer achar o valor de a, para isso usei a expressão:
a^2 + a - 2 = 0 e encontrei
a = -2 e a = 1
Discutindo o sistema temos que:
Se a = 1 ou a = -2 Sistema Imcompativel
Se a diferente de 1 e diferente de - 2 Sistema Compativel e Determinado.
Esta correto a minha informação.
Pq tenho uma duvida.
Se a = 1 temos que a linha 3 sera constituidas de zero isso me deixa confuso.
Ficaria grato com a ajuda. Desculpa mais ainda não sei usar o TEx mas ja começei ler alguns coisas sobre.
Flávio Santana.
-
380625
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Sex Fev 18, 2011 17:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Dom Ago 28, 2011 22:26
380625 escreveu:Seguindo a idéia que vc começou chego na seguinte matriz
1 1 -a 0
0 1 1 -a/a-1
0 0 a^2 + a - 2 2 - 2a
Considere as seguintes operações na matriz estendida original:
Isso produz a matriz:

380625 escreveu:Agora o que tenho que fazer achar o valor de a, para isso usei a expressão:
a^2 + a - 2 = 0 e encontrei
a = -2 e a = 1
Na verdade, você deveria analisar duas equações:

e

.
Mas, acontece que nesse exercício essas duas equações tem uma solução em comum (que é a = 1). Sendo assim, no final haverá apenas dois valores que zeram o determinante da matriz dos coeficientes, que seriam a = -2 e a = 1.
380625 escreveu:Discutindo o sistema temos que:
Se a = 1 ou a = -2 Sistema Imcompativel
Cuidado! Mesmo quando a matriz dos coeficientes tem determinante nulo, o sistema pode ter solução. Por exemplo, ele poderá ser compatível e indeterminado. Você precisa substituir cada um dos valores de a e verificar se isso acontece.
380625 escreveu:Se a diferente de 1 e diferente de - 2 Sistema Compativel e Determinado.
Ok.
380625 escreveu:Se a = 1 temos que a linha 3 sera constituidas de zero isso me deixa confuso.
Qual é a confusão? Se a = 1, teremos a matriz:

Observando a segunda linha, veja que o sistema é incompatível.
380625 escreveu:Desculpa mais ainda não sei usar o TEx mas ja começei ler alguns coisas sobre.
Procure fazer um esforço para aprender a digitar as matrizes usando o LaTeX. A forma como você está digitando não é adequada.
Veja que para digitar, por exemplo, uma matriz 3 por 3, basta usar o comando:
- Código: Selecionar todos
[tex]
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
[/tex]
O resultado desse comando é:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Método de Gauss Jordan
por Claudin » Sex Ago 26, 2011 03:00
- 2 Respostas
- 4642 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 22:51
Álgebra Elementar
-
- Método de de Gauss-Jordan
por AmandaPmend » Seg Nov 10, 2014 14:46
- 1 Respostas
- 3416 Exibições
- Última mensagem por adauto martins

Ter Nov 11, 2014 14:51
Álgebra Linear
-
- Metodo de Gauss Jordan em Matriz 4x4 (Dificil)
por Rhyu » Sex Abr 06, 2012 17:26
- 1 Respostas
- 18385 Exibições
- Última mensagem por LuizAquino

Sex Abr 06, 2012 21:31
Matrizes e Determinantes
-
- Resolução de sistemas (método de Gauss-Jordan)
por Danilo » Qua Nov 28, 2012 20:08
- 1 Respostas
- 3004 Exibições
- Última mensagem por e8group

Qua Nov 28, 2012 20:42
Sistemas de Equações
-
- Eliminação Gauss Jordan
por kassya » Ter Abr 22, 2014 16:54
- 0 Respostas
- 2565 Exibições
- Última mensagem por kassya

Ter Abr 22, 2014 16:54
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.