• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação

inequação

Mensagempor maria cleide » Qui Mai 19, 2011 20:08

Se a< -2,os valores de x tais que \dfrac{a}{2}\cdot (x-a)<-(x+2) são aqueles que satisfazem:
A-( )x<a-2
B-( )x<-2a
C-( )x>2a
D-( )x>a-2
E-( )a-2<x<2-a

Como desenvolvi:\dfrac{ax-a^2}{2}<-(x+2)
ax-a^2<-2x-4
x(a+2)<-4+a^2
x<\dfrac{-4+a^2}{-(a+2)}
x<\dfrac{-4+a^2}{-a-2}
x<2-a ou x>a-2, Meu raciocínio esta correto? Existe outra forma de fazer?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: inequação

Mensagempor MarceloFantini » Qui Mai 19, 2011 20:33

Errou na terceira passagem. Se a < -2, então a+2 < 0, e portanto dividir a desigualdade por a+2 significa inverter o símbolo. Refaça usando isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: inequação

Mensagempor maria cleide » Sex Ago 26, 2011 23:51

Não entendi, eu só vou inverter o símbolo? Por quê?
x(a+2)<-4+a^2 vai ficar assim?
x>\dfrac{-4+a^2}{a+2} resultado x>a-2
Mas Por quê? Quando eu tenho o x negativo, eu não multiplico toda inequação por -1? Assim invertendo o sinal dos números e o símbolo? Se eu inverter os sinais dos números não encontrarei esta resposta, por isso não entendi o que foi feito.
Obrigada, aguardo ajuda.
Maria Cleide
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: inequação

Mensagempor MarceloFantini » Sáb Ago 27, 2011 00:21

O melhor jeito, onde não há confusão, é assim:

\frac{a}{2} \cdot (x-a) < -(x+2) \implies \frac{a}{2} \cdot (x-a) + (x+2) < 0
\implies ax -a^2 +2x +4 < 4 \implies x(a+2) - (a^2 -4) < 0
\implies (a+2)(x - (a-2)) < 0

Ora, sabemos que a < -2 \implies a+2 < 0, logo para que este produto seja menor que zero devemos ter x -(a-2) > 0 \implies x > a-2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.