• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação

inequação

Mensagempor maria cleide » Qui Mai 19, 2011 20:08

Se a< -2,os valores de x tais que \dfrac{a}{2}\cdot (x-a)<-(x+2) são aqueles que satisfazem:
A-( )x<a-2
B-( )x<-2a
C-( )x>2a
D-( )x>a-2
E-( )a-2<x<2-a

Como desenvolvi:\dfrac{ax-a^2}{2}<-(x+2)
ax-a^2<-2x-4
x(a+2)<-4+a^2
x<\dfrac{-4+a^2}{-(a+2)}
x<\dfrac{-4+a^2}{-a-2}
x<2-a ou x>a-2, Meu raciocínio esta correto? Existe outra forma de fazer?
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: inequação

Mensagempor MarceloFantini » Qui Mai 19, 2011 20:33

Errou na terceira passagem. Se a < -2, então a+2 < 0, e portanto dividir a desigualdade por a+2 significa inverter o símbolo. Refaça usando isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: inequação

Mensagempor maria cleide » Sex Ago 26, 2011 23:51

Não entendi, eu só vou inverter o símbolo? Por quê?
x(a+2)<-4+a^2 vai ficar assim?
x>\dfrac{-4+a^2}{a+2} resultado x>a-2
Mas Por quê? Quando eu tenho o x negativo, eu não multiplico toda inequação por -1? Assim invertendo o sinal dos números e o símbolo? Se eu inverter os sinais dos números não encontrarei esta resposta, por isso não entendi o que foi feito.
Obrigada, aguardo ajuda.
Maria Cleide
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: inequação

Mensagempor MarceloFantini » Sáb Ago 27, 2011 00:21

O melhor jeito, onde não há confusão, é assim:

\frac{a}{2} \cdot (x-a) < -(x+2) \implies \frac{a}{2} \cdot (x-a) + (x+2) < 0
\implies ax -a^2 +2x +4 < 4 \implies x(a+2) - (a^2 -4) < 0
\implies (a+2)(x - (a-2)) < 0

Ora, sabemos que a < -2 \implies a+2 < 0, logo para que este produto seja menor que zero devemos ter x -(a-2) > 0 \implies x > a-2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.