• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[trigonometria]

[trigonometria]

Mensagempor Flavia R » Qui Ago 25, 2011 12:07

Considerando-se que a equação senx.cosx=\frac{\sqrt[2]{3}}{4}} tem n soluções no intervalo [0,2\Pi], pode-se afirmar que o valor de n é:


bom, eu tentei elevar os dois lados ao quadrado já, mas não fechou..
Flavia R
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Ago 24, 2011 17:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em agrimensura
Andamento: formado

Re: [trigonometria]

Mensagempor gvm » Qui Ago 25, 2011 21:40

Bom, uma dica pra resolver esse tipo de exercício, onde você tem senx . cosx em um dos membros é se lembrar das relações de Arco Duplo, mais especificamente dessa aqui:

sen (2x) = 2.senx.cosx

Pensa em como utilizar isso no exercício em questão, você vai acabar chegando a uma expressão bem mais simples do que se elevasse os dois membros ao quadrado e utilizasse {sen}^{2}x + {cos}^{2}x = 1 para deixar toda a expressão em função do seno ou cosseno

Espero ter ajudado.
gvm
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 25, 2011 00:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando Engenharia
Andamento: cursando

Re: [trigonometria]

Mensagempor Flavia R » Qui Ago 25, 2011 22:01

na verdade, eu não consigo ver como a fórmula do arco duplo pode me ajudar..:S
Flavia R
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Ago 24, 2011 17:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em agrimensura
Andamento: formado

Re: [trigonometria]

Mensagempor gvm » Qui Ago 25, 2011 22:09

A expressão é a seguinte:

senx . cosx = \sqrt[2]{3}/4

Multiplicando os dois membros da equação por 2 obtem-se:

2.senx . cosx = \sqrt[2]{3}/2

Sabe-se que sen(2x) = 2.senx.cosx, portanto:

sen(2x) = \sqrt[2]{3}/2

Agora que temos toda a expressão em função apenas do seno é só resolver normalmente e encontrar as soluções contidas no intervalo especificado, lembrando que as soluções da equação são os valores de x e não de 2x.

Esperto ter ajudado
gvm
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 25, 2011 00:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando Engenharia
Andamento: cursando


Voltar para Trigonometria

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)