por paula luna » Qua Ago 24, 2011 21:38
Oi minha resposta nao esta de acordo com o gabarito, alguem pode corrigir minha resoluçao por favor.
Questao:
![\int_{}^{}\frac{{e}^{x}}{\sqrt[2]{{e}^{2x}+1}}dx \int_{}^{}\frac{{e}^{x}}{\sqrt[2]{{e}^{2x}+1}}dx](/latexrender/pictures/eb8ecb7e6a73ad1372098b7fe43de284.png)
Relaçoes:



Resoluçao:
![\int_{}^{}\frac{tg(\theta).{sec}^{2}(\theta)}{sec(\theta)}d\theta = \int_{}^{} tg(\theta).sec(\theta)d\theta = sec(\theta) = \sqrt[2]{{e}^{2x}+1} + C \int_{}^{}\frac{tg(\theta).{sec}^{2}(\theta)}{sec(\theta)}d\theta = \int_{}^{} tg(\theta).sec(\theta)d\theta = sec(\theta) = \sqrt[2]{{e}^{2x}+1} + C](/latexrender/pictures/6af88c18465eac64b1864c74f4a1e90e.png)
Resposta certa:
![ln\left| \sqrt[2]{{e}^{2x}+1} + {e}^{x}\right| + C ln\left| \sqrt[2]{{e}^{2x}+1} + {e}^{x}\right| + C](/latexrender/pictures/d84d1e3e794df962d3f3476e16a4ecbc.png)
Bem percebi que no final da resoluçao deveria ter sido

,mas nao sei que parte da minha resoluçao esta errada
-
paula luna
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Mai 05, 2011 21:56
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por paula luna » Qui Ago 25, 2011 00:36
Sim, faz sentido pensar nisto à partir da gabarito, no entanto continuo sem entender o porque desta relaçao. Eu estou usando Stewart pra estudar e la ele explica, segundo o que eu entendi, que em uma questao (destas sobre subst. trigon.) deve-se proceder assim:
Caso seja
![\sqrt[]{{x}^{2}+{a}^{2}} \sqrt[]{{x}^{2}+{a}^{2}}](/latexrender/pictures/d1a467a66c503c2714b9447fab557327.png)
( onde o ''x'' representa a variavel da questao e "a" uma constante ):
-

-

-

(tem outros dois casos, mas nao ha necessidade de botar aqui)
Bem foi o que eu fiz na questao. Pode talvez ser por se tratar de exponencial e por isso nao estou sabendo como fazer a subst.
-
paula luna
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Qui Mai 05, 2011 21:56
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Qui Ago 25, 2011 08:07
paula luna escreveu:Sim, faz sentido pensar nisto à partir da gabarito, no entanto continuo sem entender o porque desta relaçao. Eu estou usando Stewart pra estudar e la ele explica, segundo o que eu entendi, que em uma questao (destas sobre subst. trigon.) deve-se proceder assim:
Caso seja
![\sqrt[]{{x}^{2}+{a}^{2}} \sqrt[]{{x}^{2}+{a}^{2}}](/latexrender/pictures/d1a467a66c503c2714b9447fab557327.png)
( onde o ''x'' representa a variavel da questao e "a" uma constante ):
![\sqrt[]{{x}^{2}+{a}^{2}} = a.sec(\theta) \sqrt[]{{x}^{2}+{a}^{2}} = a.sec(\theta)](/latexrender/pictures/1af806c867ea11208d9c50cb0fda418c.png)


Você não compreendeu como funciona a técnica de substituição. Veja que não estou me referindo a substituição trigonométrica, mas sim a técnica geral de substituição. Eu recomendo que você volte na seção do livro onde explica essa técnica.
Após fazermos

precisamos derivar ambos os membros da equação. Acontece que

. Além disso, temos que

. Colocando agora os termos diferenciais (isto é,

e

), ficamos com

, ou seja,

.
Agora, aplique a mesma ideia considerando que a substituição é

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2698 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2714 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Seg Ago 22, 2011 00:44
- 1 Respostas
- 1334 Exibições
- Última mensagem por LuizAquino

Seg Ago 22, 2011 08:52
Cálculo: Limites, Derivadas e Integrais
-
- Integral Trigonometrica
por Guilherme Carvalho » Dom Abr 01, 2012 22:05
- 2 Respostas
- 1234 Exibições
- Última mensagem por Guilherme Carvalho

Seg Abr 02, 2012 19:29
Cálculo: Limites, Derivadas e Integrais
-
- [Integral trigonométrica]
por vitor_jo » Ter Fev 10, 2015 02:09
- 6 Respostas
- 4295 Exibições
- Última mensagem por Russman

Qua Fev 18, 2015 06:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.