• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Real

Função Real

Mensagempor jcvalim » Qua Ago 24, 2011 11:39

Considere a função real f definida por f(x) = 3 + {2}^{x-1}, sendo g de A a sua inversa. Considere também as seguintes afirmativas. Verifique as falsas e as verdadeiras, justificando sua resposta.

a) a imagem de f é A.
b) o gráfico de f está acima da reta y = 4
c) g(\frac{11}{2}) = {Log}_{2}5
d) Se f (h(x)) = 3 + 2x então h(¼) = 0
e) O gráfico da função g intercepta o eixo x no ponto (1,0)
f) O conjunto solução da inequação f(2x+1) < 1 + 3 . {2}^{x} é o intervalo ]0,1[

Se faz necessario as soluções de cada resposta.

A primeira eu fiz e sei que é Falsa pois A não pode ser imagem de f, pois se A é a função então A é o dominio então a imagem será B.

A \rightarrow B

Obrigado, a todos!!!
jcvalim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 24, 2011 11:11
Formação Escolar: SUPLETIVO
Área/Curso: Administração
Andamento: cursando

Re: Função Real

Mensagempor MarceloFantini » Qua Ago 24, 2011 13:47

Note que o maior domínio possível de f é \mathbb{R}, enquanto que sua imagem é (3, + \infty). Portanto, sua inversa será definida: g: \, (3, + \infty) \to \mathbb{R}, portanto a primeira é falsa. Seu argumento não é válido pois é possível ter uma função com domínio e imagem iguais. Vamos encontrar a função inversa:

f(x) = 3 + 2^{x-1} \implies f(x) -3 = 2^{x-1} \implies 2(f(x) -3) = 2^x
\implies x = \log_2 2(f(x) - 3) = 1 + \log_2 (f(x) -3)

Verifique as afirmações. A letra b é falsa, pois tome x=0, temos f(0) = 3 + 2^{0-1} = 3 + 2^{-1} = 3,5 < 4 e portanto o gráfico de f não está acima da reta y=4 (existem outros pontos, foi para ilustrar, mesmo porque o conjunto imagem demonstra que há infinitos pontos abaixo da reta).

Tente fazer as outras letras.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Real

Mensagempor jcvalim » Qua Ago 24, 2011 16:48

Mas no caso da letra B se eu tomasse o X=2, eu poderia utilizar o X sendo < que 2?
jcvalim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 24, 2011 11:11
Formação Escolar: SUPLETIVO
Área/Curso: Administração
Andamento: cursando

Re: Função Real

Mensagempor MarceloFantini » Qua Ago 24, 2011 16:50

Note que x=2 não é contra-exemplo, uma vez que f(2) = 3+2^{2-1} = 3+2 = 5 e está acima da reta y=4. Mesmo tomando x<2, o seu exemplo não garante que existam pontos do gráfico abaixo da reta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Real

Mensagempor jcvalim » Qua Ago 24, 2011 17:26

MarceloFantini escreveu:Note que x=2 não é contra-exemplo, uma vez que f(2) = 3+2^{2-1} = 3+2 = 5 e está acima da reta y=4. Mesmo tomando x<2, o seu exemplo não garante que existam pontos do gráfico abaixo da reta.


Entendi agora.
Só mais uma coisa poderia me dar um auxilio com essa questão que envolve o logaritmo, pois estou travado nela. As outras da para desenrolar. A letra C


Obrigado!!!
jcvalim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 24, 2011 11:11
Formação Escolar: SUPLETIVO
Área/Curso: Administração
Andamento: cursando

Re: Função Real

Mensagempor MarceloFantini » Qua Ago 24, 2011 17:48

Você tentou substituir x=\frac{11}{2} e ver se o valor é igual ao afirmado na letra C?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Real

Mensagempor jcvalim » Qua Ago 24, 2011 18:03

MarceloFantini escreveu:Você tentou substituir x=\frac{11}{2} e ver se o valor é igual ao afirmado na letra C?


Então mas a função e f(x) e na afirmação ele esta utilizando g(x).
jcvalim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 24, 2011 11:11
Formação Escolar: SUPLETIVO
Área/Curso: Administração
Andamento: cursando

Re: Função Real

Mensagempor MarceloFantini » Qua Ago 24, 2011 18:09

Eu já te dei a expressão para a inversa, investigue o outro post.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?