por ARCS » Ter Ago 23, 2011 18:15
Sempre que queremos calcular a integral da secante temos que multliplicar a secante por (secx+tgx) / (secx+tgx). Existe alguma forma de deduzir este fator ou terei que memoriza-lo mesmo?
-
ARCS
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Qui Out 28, 2010 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Neperiano » Ter Ago 23, 2011 19:36
Ola
Você pode transforma-la em 1/cos x, mas acho que isso naum ajuda muito
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por LuizAquino » Ter Ago 23, 2011 23:02
ARCS escreveu:Sempre que queremos calcular a integral da secante temos que multliplicar a secante por (secx+tgx) / (secx+tgx). Existe alguma forma de deduzir este fator ou terei que memoriza-lo mesmo?
Essa estratégia, bem esperta, é realizada já pensando na utilização da técnica de substituição no passo seguinte.
A forma de "deduzi-la" seria exatamente pensando na questão: o que devo multiplicar para depois poder usar a técnica de substituição?
Comparado a quem teve pela primeira vez essa ideia, que foi bastante criativa, o nosso trabalho é bem simples: aprendê-la (que é diferente de decorá-la).
Neperiano escreveu:Você pode transforma-la em 1/cos x, mas acho que isso naum ajuda muito
Sim, ajuda.

Fazendo a substituição

e

, obtemos

Para deixar a família de primitivas no formato canônico, faremos o desenvolvimento abaixo.

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada de secante.
por Sobreira » Ter Nov 27, 2012 16:38
- 3 Respostas
- 2952 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 22:27
Cálculo: Limites, Derivadas e Integrais
-
- Demonstração- secante
por mathsoliver » Seg Abr 13, 2015 12:32
- 1 Respostas
- 1758 Exibições
- Última mensagem por Cleyson007

Seg Abr 13, 2015 16:51
Equações
-
- seno e secante negativa
por Apotema » Seg Nov 23, 2009 14:36
- 2 Respostas
- 1986 Exibições
- Última mensagem por Apotema

Qua Nov 25, 2009 16:54
Trigonometria
-
- Função Secante e Cossecante
por gustavoluiss » Qui Jul 14, 2011 20:42
- 11 Respostas
- 5518 Exibições
- Última mensagem por gustavoluiss

Sáb Jul 16, 2011 15:19
Trigonometria
-
- Declive da reta secante
por joaofonseca » Ter Nov 08, 2011 12:04
- 3 Respostas
- 4703 Exibições
- Última mensagem por LuizAquino

Sex Nov 11, 2011 10:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.