por Anniinha » Ter Ago 16, 2011 18:57
Pessoal eu estou com dúvidas quanto a resolução dessa integral:

eu sei que se resolve por integração por partes!
mas ja fiz com u sendo o

e u sendo

e não consigo resolver! a resposta é

-

Anniinha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Out 31, 2010 01:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Geofísica
- Andamento: cursando
por Neperiano » Ter Ago 16, 2011 19:59
Ola
O u é e^y^-2
Você pode demonstrar seus passos para vermos o que errou, porque pode ser na hora de derivar o u, ou de integrar o dv.
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Anniinha » Ter Ago 16, 2011 21:01

entao:

logo

se continuar assim (fazendo u = y²) o segundo termo vai evoluir para

e depois

num ciclo sem fim..
mas se fizer u= y² vamos ter q integrar o

o que me deixou sem saída.. alguem pode me ajudar?
-

Anniinha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Out 31, 2010 01:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Geofísica
- Andamento: cursando
por MarceloFantini » Ter Ago 16, 2011 23:09
Você está errando a integração. Na verdade o fator que deve ser escolhido como derivado é

e não

. Tente fazer essa mudança.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Anniinha » Ter Ago 16, 2011 23:22
para

tenho entao q

ai faz a integração normal sem os limites por enquanto??
e agora eu devo fazer u=y ou

-

Anniinha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Out 31, 2010 01:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Geofísica
- Andamento: cursando
por MarceloFantini » Ter Ago 16, 2011 23:26
Com

. Lembre-se que sempre é possível fazer uma integral indefinida, encontrar a primitiva e apenas depois voltar a integral normal colocando-se limites de integração e igualando à primitiva avaliada nos limites dados.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Anniinha » Ter Ago 16, 2011 23:54
vou tentar aqui qq coisa eu aviso, nao suma usahsu =p
-

Anniinha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Out 31, 2010 01:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Geofísica
- Andamento: cursando
por Anniinha » Qua Ago 17, 2011 00:18
deu certo!!!!!! OBRIGADA! maaaaas tem umas passagens q eu nao entendi.. primeiro que eu nao consigo chegar a resolução dessa integral
MarceloFantini escreveu:Com

. Lembre-se que sempre é possível fazer uma integral indefinida, encontrar a primitiva e apenas depois voltar a integral normal colocando-se limites de integração e igualando à primitiva avaliada nos limites dados.
q vc fez.. eu tava errando aí mesmo pq essa integral sem o y vai ser a integral de gauss neh isso? q vai ser a raiz de pi.. e depois eu sei q isso:

variando de

é zero.. mas eu tambem nao entendo o porque.. ja que fica assim:

-

Anniinha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Out 31, 2010 01:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Geofísica
- Andamento: cursando
por MarceloFantini » Qua Ago 17, 2011 00:31
Isso não é a integral de Gauss. Segundo, por substituição verá que a integral sai facilmente. Terceiro, CUIDADO! O que você fez foi um abuso de notação erroneamente, note que a integral avaliada de menos infinito a mais infinito significa

e não o integrando.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Qua Ago 17, 2011 17:25
Primeiro, vale destacar que a integral

é chamada de
Integral Imprópria.
Vejamos a solução de maneira apropriada.
Para resolvê-la, é necessário calcular os limites:

Utilizando a sugestão de Fantini, obtemos que:
![\int_t^0 y^2e^{-y^2}\,dy = \left[-\frac{y}{2}e^{-y^2}\right]_t^0 - \int_t^0 -\frac{1}{2} e^{-y^2}\,dy \int_t^0 y^2e^{-y^2}\,dy = \left[-\frac{y}{2}e^{-y^2}\right]_t^0 - \int_t^0 -\frac{1}{2} e^{-y^2}\,dy](/latexrender/pictures/c8182daad63bb253af9de370703e424f.png)
![\int_0^t y^2e^{-y^2}\,dy = \left[-\frac{y}{2}e^{-y^2}\right]_0^t - \int_0^t -\frac{1}{2} e^{-y^2}\,dy \int_0^t y^2e^{-y^2}\,dy = \left[-\frac{y}{2}e^{-y^2}\right]_0^t - \int_0^t -\frac{1}{2} e^{-y^2}\,dy](/latexrender/pictures/5681872153507bc9e6d08bca374a5ba7.png)
Substituindo isso nos limites, ficamos com:


Mas aplicando a
Regra de L'Hospital, obtemos que:


Desse modo, ficamos apenas com


Unindo todas as informações, teremos que
ObservaçãoMarceloFantini escreveu:Lembre-se que sempre é possível fazer uma integral indefinida, encontrar a primitiva e apenas depois voltar a integral normal colocando-se limites de integração e igualando à primitiva avaliada nos limites dados
Nem sempre é possível resolver analiticamente a integral indefinida! A integral indefinida

é um exemplo disso. Leia um pouco sobre isso em:
http://en.wikipedia.org/wiki/Gaussian_integral
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral, como resolver??
por manuoliveira » Qua Out 17, 2012 21:40
- 2 Respostas
- 1745 Exibições
- Última mensagem por e8group

Qui Out 18, 2012 11:10
Cálculo: Limites, Derivadas e Integrais
-
- Duvida de como resolver integral
por Manoella » Qui Fev 24, 2011 22:51
- 1 Respostas
- 1734 Exibições
- Última mensagem por LuizAquino

Dom Fev 27, 2011 19:23
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver essa integral.
por 380625 » Qua Set 07, 2011 14:02
- 3 Respostas
- 2906 Exibições
- Última mensagem por Neperiano

Qua Set 07, 2011 15:37
Cálculo: Limites, Derivadas e Integrais
-
- Integral indefinida. Como resolver?
por Cristiano Tavares » Sex Nov 25, 2011 22:54
- 4 Respostas
- 2858 Exibições
- Última mensagem por Cristiano Tavares

Qua Nov 30, 2011 15:32
Cálculo: Limites, Derivadas e Integrais
-
- Integral Iterada - Como resolver?
por Cleyson007 » Qua Abr 18, 2012 16:44
- 4 Respostas
- 2173 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 21, 2012 17:00
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.