Considere o seguinte conjunto de dados referentes ao peso, em kg, de uma turma de 92 alunos:
Homens: 63.5, 65.5, 72.5, 85.5, 69, 74, 68, 85.5, 87, 62, 72.5, 69, 68.5, 65.5, 76.5, 79, 79, 76.5, 81, 62, 76.5, 70, 59, 83, 85.5, 69, 76.5, 69, 96, 68, 65.5, 69, 69, 68, 69, 68, 81, 72.5, 62, 72.5, 59, 69, 68, 65.5, 69, 68, 63.5, 81, 85.5, 65.5, 68, 74, 63.5, 65, 62, 55.4, 68
Mulheres: 63.5, 54.5, 59, 62, 54.5, 56.5, 52, 65, 68, 50.5, 56.5, 59, 54.5, 59, 59, 54.5, 52, 56.5, 62, 56.5, 52, 55, 52, 46, 52, 68, 49.5, 52, 48.5, 43, 56.5, 59, 49.5, 68, 48.5
Como calcular o primeiro e terceiro quartis?


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.