• Anúncio Global
    Respostas
    Exibições
    Última mensagem

determinar o ângulo formado pela reta tangente à uma curva.

determinar o ângulo formado pela reta tangente à uma curva.

Mensagempor theSinister » Dom Ago 14, 2011 17:45

vamos considerar a seguinte função : f(x)= {x}^{2}+2x+2 , e queremos encontrar a inclinação da reta tangente a curva no ponto (1,5), ou seja nada mais do q derivar a função , q ficaria f'(x)= 2x+2, dai substituímos "x "por "1" e encontramos a inclinação de "4". A partir daí fazemos a equação da reta q ficaria y= 4x+1, agora a duvida é: como encontrar o ângulo formado entre a reta e o eixo x? Eu sei q o valor desse ângulo é de 75,9 e a tangente dele é 4, porém não entendi como o meu professor encontrou o valor do angulo . help-me.
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: determinar o ângulo formado pela reta tangente à uma cur

Mensagempor LuizAquino » Seg Ago 15, 2011 16:57

Você precisa usar a função arco tangente, que é a inversa da função tangente.

Você tem que \textrm{tg}\,\alpha = 4 . Usando uma calculadora científica, obtemos que \alpha = \textrm{acrtg}\,4 \approx 75,96 .

Observação

1) É comum nas calculadoras científicas aparecer a notação \tan^{-1} para representar o arco tangente. Portanto, nessas calculadoras você deve digitar \tan^{-1} 4 .

2) Sem o uso de calculadora, teríamos que apelar para algum método numérico para calcular \textrm{acrtg}\,4 . Por exemplo, o Método de Newton. Vale lembrar que esses métodos numéricos são estudados na disciplina Cálculo Numérico.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.