• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pre-Universitario (Trigonometria)

Pre-Universitario (Trigonometria)

Mensagempor Pre-Universitario » Ter Ago 09, 2011 18:00

Um rapaz observa o topo de um predio sob uma ngulo de 60 Graus.
Depois, se afasatando 100m vendo o predio sob um agulo agora de 30 Graus.
Qual a altura do predio.
Obs: a resposta ñ e em metros
Bom ! eu fiz e refiz essa questão varias veses mas ñ consegui achar o
resultado
quem poder fazer eu agradeço !
Pre-Universitario
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Ago 05, 2011 17:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: 3
Andamento: formado

Re: Pre-Universitario (Trigonometria)

Mensagempor LuizAquino » Ter Ago 09, 2011 19:34

Esse exercício é análogo ao outro que você enviou no tópico:
[altura do prédio] A resposta esta correta ?
viewtopic.php?f=109&t=5563

Qual foi exatamente a sua dificuldade? Em que unidade de comprimento está exibida a resposta?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Pre-Universitario (Trigonometria)

Mensagempor Pre-Universitario » Qua Ago 10, 2011 15:41

bom !
eu faço exatamente como o outro mas não consigo
achar essa resposta 50\sqrt[]{3}
Pre-Universitario
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Ago 05, 2011 17:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: 3
Andamento: formado

Re: Pre-Universitario (Trigonometria)

Mensagempor LuizAquino » Qui Ago 11, 2011 19:39

O exercício pode ser simplificado na figura abaixo. No caso, a altura do observador foi ignorada.

altura_do_prédio.png
altura_do_prédio.png (3.9 KiB) Exibido 1339 vezes


Podemos então escrever o sistema:

\begin{cases}
\textrm{tg}\,60^\circ = \frac{h}{d} \\
\textrm{tg}\,30^\circ = \frac{h}{d+100}
\end{cases}

Isso é o mesmo que:

\begin{cases}
\sqrt{3} = \frac{h}{d} \\
\frac{\sqrt{3}}{3} = \frac{h}{d+100}
\end{cases}

Da primeira equação, temos que d = \frac{h}{\sqrt{3}} .

Podemos então reescrever a segunda equação como \frac{\sqrt{3}}{3} = \frac{h}{\frac{h}{\sqrt{3}} + 100} . Resolvendo essa equação, obtemos h = 50\sqrt{3} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Trigonometria

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.