• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Ago 02, 2011 02:49

Não consigo resolver este exercício de limite de função composta.

\lim_{x\rightarrow1}\frac{\sqrt[]{x^2+3}-2}{x^2-1}


Alguém poderia dar uma dica por onde começar?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 03:02

Sendo:
\lim_{x\rightarrow1}\frac{\sqrt[]{x^2+3}-2}{x^2-1}

Onde u=\sqrt[]{x^2+3} e x=u^2-3

\lim_{x\rightarrow1}\frac{\sqrt[]{x^2+3}-2}{x^2-1}

\lim_{u\rightarrow2}\frac{(u-2)}{(u^2-4)}

\lim_{u\rightarrow2}\frac{(u-2)}{(u-2)(u+2)}

\lim_{u\rightarrow2}\frac{1}{(u+2)}= \frac{1}{4}

Correto?
Resolvi analisando os exercícios que já estão feitos no livro, porém, foi na base do chute e da analogia mesmo a condição de existência feita nas primeiras linhas da resolução. Gostaria que alguém detalhasse como "desmembrar" essa função composta para encontrar o valor de u e o valor de x. E também, saber como u\rightarrow2

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Ago 02, 2011 09:23

Olá Claudin,

Está sua solução é análogo a que eu lhe apresentei aqui

Onde u=\sqrt[]{x^2+3} e x=u^2-3

Só uma correção

\boxed{x^2}=u^2-3

Observe que,
Como x\to 1 então u\to 2, pois u=\sqrt{1^2+3}=2

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor LuizAquino » Ter Ago 02, 2011 09:36

Claudin escreveu:\lim_{x\rightarrow1}\frac{\sqrt[]{x^2+3}-2}{x^2-1}


Alguém poderia dar uma dica por onde começar?


Outra opção para resolver esse limite é multiplicar o numerador e o denominador por \sqrt{x^2+3}+2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 15:58

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Ago 02, 2011 17:33

LuizAquino escreveu:Outra opção para resolver esse limite é multiplicar o numerador e o denominador por \sqrt{x^2+3}+2 .


Provando a dica de Luiz Aquino temos:

\lim_{x\rightarrow1}\frac{\sqrt[]{x^2+3}-2}{x^2-1}

\lim_{x\rightarrow1}\frac{\sqrt[]{x^2+3}-2}{x^2-1}.\frac{\sqrt[]{x^2+3}+2}{\sqrt[]{x^2+3}+2}

\lim_{x\rightarrow1}\frac{x^2+3-4}{(x+1)(x-1)(\sqrt[]{x^2+3}+2)}

\lim_{x\rightarrow1}\frac{(x+1)(x-1)}{(x+1)(x-1)(\sqrt[]{x^2+3}+2)}

\lim_{x\rightarrow1}\frac{1}{(\sqrt[]{x^2+3}+2)}= \frac{1}{(\sqrt[]{1^2+3}+2)}=\boxed{\frac{1}{4}}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: