• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício do ITA-SP

Exercício do ITA-SP

Mensagempor tales » Qui Jul 28, 2011 13:51

Considere a função: Z-\left(0 \right)\rightarrow R,  f(x)=\sqrt[2]{{3}^{x-2}}\cdot{({9}^{2x+1})}^{\frac{1}{2x}}-{({3}^{2x+5})}^{\frac{1}{x}}+1
Qual o valor da soma de todos os valores de x para os quais a equação {y}^{2}+2y+f(x)=0 tem raiz dupla ?

Pelo que entendi ele quer a soma das raízes do polinômio:p(x)=\sqrt[2]{{3}^{x-2}}\cdot{({9}^{2x+1})}^{\frac{1}{2x}}-{({3}^{2x+5})}^{\frac{1}{x}}, fiquei uma hora procurando uma forma de encontrá-las, mas não consegui.Se alguém pudesse me ajudar, eu ficaria muito grato.
tales
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 28, 2011 10:09
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando

Re: Exercício do ITA-SP

Mensagempor LuizAquino » Qui Jul 28, 2011 16:38

tales escreveu:Pelo que entendi ele quer a soma das raízes do polinômio: p(x)=\sqrt{{3}^{x-2}}\cdot{({9}^{2x+1})}^{\frac{1}{2x}}-{({3}^{2x+5})}^{\frac{1}{x}}


Em primeiro lugar, essa função p não é um "polinômio".

Em segundo, você quer resolver a equação \sqrt{{3}^{x-2}}\cdot{({9}^{2x+1})}^{\frac{1}{2x}}-{({3}^{2x+5})}^{\frac{1}{x}} = 0 .

Utilizando propriedades de potência, você pode reescrever essa equação como:

3^{\frac{x-2}{2} + \frac{4x+2}{2x}} = 3^\frac{2x+5}{x}

Isso significa que você precisa resolver a equação:

\frac{x-2}{2} + \frac{4x+2}{2x} = \frac{2x+5}{x}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercício do ITA-SP

Mensagempor Fabricio dalla » Qui Jul 28, 2011 17:20

[tex]f(x)=p(x) ?
se for,ta faltando o 1 em p(x)
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercício do ITA-SP

Mensagempor LuizAquino » Qui Jul 28, 2011 18:23

Fabricio dalla escreveu:f(x)=p(x) ?
se for,ta faltando o 1 em p(x)


Em nenhum momento foi afirmado que f(x) = p(x).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercício do ITA-SP

Mensagempor Fabricio dalla » Qui Jul 28, 2011 19:37

LuizAquino,quem é p(x) então ?
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Exercício do ITA-SP

Mensagempor LuizAquino » Qui Jul 28, 2011 20:32

Fabricio dalla escreveu:LuizAquino,quem é p(x) então ?


p é uma função que tales criou na resolução dele.

O que você deve estar querendo saber é como ele chegou nessa função.

Nesse caso, ele usou o fato de que uma equação polinomial do 2º grau do tipo ay^2 + by + c = 0 possui raiz dupla quando \Delta = 0 , sendo \Delta = b^2 - 4ac .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercício do ITA-SP

Mensagempor tales » Qui Jul 28, 2011 23:03

Fabricio dalla, meu raciocínio foi o seguinte: para uma equação do 2°grau ter raíz dupla deve posssuir \Delta=0, nesse caso \Delta={2}^{2}-4\cdot1\cdot f(x) logo \sqrt[]{{3}^{x-2}}\cdot{\left({9}^{2x+1} \right)}^{\frac{1}{2x}}-{\left({3}^{2x+5} \right)}^{\frac{1}{x}}=0 .Para ser mais específico quanto a minha dúvida chamei esta expressão de p(x) e infelizmente compliquei mais.
Editado pela última vez por tales em Qui Jul 28, 2011 23:04, em um total de 1 vez.
tales
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 28, 2011 10:09
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando

Re: Exercício do ITA-SP

Mensagempor tales » Qui Jul 28, 2011 23:03

Muito obrigado pela ajuda.
tales
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 28, 2011 10:09
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. civil
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59