por Joan » Sáb Jul 23, 2011 12:06

No conjunto R dos numeros reais, qual será o conjunto solução da equação:
![\frac{\sqrt[]{3}}{x²-1} = \frac{\sqrt[]{3}}{2x-2} - \frac{\sqrt[]{3}}{2x+2} ? \frac{\sqrt[]{3}}{x²-1} = \frac{\sqrt[]{3}}{2x-2} - \frac{\sqrt[]{3}}{2x+2} ?](/latexrender/pictures/3d7ba65e61b507b72abd4a870ec072d4.png)
Ai eu fui resolvendo da seguinte maneira:
![\frac{\sqrt[]{3}}{(x-1)(x+1)} = \frac{\sqrt[]{3}}{2(x-1)} - \frac{\sqrt[]{3}}{2(x+1)} \frac{\sqrt[]{3}}{(x-1)(x+1)} = \frac{\sqrt[]{3}}{2(x-1)} - \frac{\sqrt[]{3}}{2(x+1)}](/latexrender/pictures/2fe44ab138897da03562555542037d99.png)
Tendo o MMC = 2(x+1)(x-1), peguei dividi pelo denominador, e fui multiplicar pelos numeradores que são raizes de três, e eu nao sei como fazer de agora em diante....
desde já grato....
obs: esse "Â" no primeiro termo nao existe nem sei pq saiu...
-
Joan
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Jul 22, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por LuizAquino » Sáb Jul 23, 2011 13:03
Temos a equação:

Note que x não pode ser 1 e nem -1, pois caso contrário ocorreria divisões por zero.
Podemos reescrever essa equação como:

Dividindo toda essa equação por

, ficamos com:

Agora, multiplicando toda essa equação por

, ficamos com:

A partir daí tente terminar de resolver o exercício.
ObservaçãoJoan escreveu:obs: esse "Â" no primeiro termo nao existe nem sei pq saiu...
Isso apareceu pois no ambiente LaTeX você usou o atalho do teclado para escrever o símbolo "²". O correto é usar o seguinte comando:
- Código: Selecionar todos
[tex]x^2[/tex]
O resultado desse comando é:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Joan » Sáb Jul 23, 2011 13:21
Obrigado vou tentar resolver aki... vlw mesmo...
Consegui, obrigado, muito obrigado...
-
Joan
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Jul 22, 2011 18:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [triângulo equilátero] Questão Colégio Naval 2010
por Joan » Sex Jul 22, 2011 18:42
- 3 Respostas
- 3512 Exibições
- Última mensagem por Joan

Sáb Jul 23, 2011 11:34
Geometria Plana
-
- MMC e MDC - Colégio Naval
por igorcamilo » Sáb Jun 25, 2011 21:22
- 1 Respostas
- 1912 Exibições
- Última mensagem por FilipeCaceres

Dom Jun 26, 2011 16:13
Álgebra Elementar
-
- Colégio Naval
por Joan » Seg Jul 25, 2011 16:38
- 8 Respostas
- 7967 Exibições
- Última mensagem por LuizAquino

Ter Jul 26, 2011 21:35
Álgebra Elementar
-
- Divisibilidade - Colégio naval
por igorcamilo » Sex Jun 24, 2011 19:22
- 2 Respostas
- 2308 Exibições
- Última mensagem por igorcamilo

Sex Jun 24, 2011 20:32
Álgebra Elementar
-
- Colégio Naval - Aritmética dos inteiros
por eliky » Sex Mai 17, 2013 01:16
- 1 Respostas
- 2236 Exibições
- Última mensagem por DanielFerreira

Dom Mai 19, 2013 20:40
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.