• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função continua

função continua

Mensagempor alexandreredefor » Dom Jul 17, 2011 18:23

PARA QUAIS VALORES DE X A FUNÇÃO G É CONTINUA?

G(X)= {0, SE X É RACIONAL
{ X, SE X É IRRACIONAL


obs: não consegui utilizar uma chave só.

tive uma prova e não consegui resolver vou ter prova substituta sera que pode me auxiliar...
ou me indicar algum video que tem o assunto
alexandreredefor
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jul 15, 2011 10:04
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: função continua

Mensagempor Molina » Dom Jul 17, 2011 22:26

Boa noite, Alexandre.

Vou dar a ideia de como eu pensaria nesta questão e quero ver se você chega a mesma conclusão que eu:

Se imaginarmos os números reais como uma reta, teremos que cada ponto que forma esta reta são os números reais. Alguns pontos são os racionais e outros pontos são os irracionais. A união dos dois conjuntos de pontos formará a reta (Q\cup I = R). Se retirarmos, por exemplo, os números irracionais será possível observar alguns "buracos" nesta reta. O restante que permanece na reta são os números racionais.

Um esboço disso seria:
______ _______ ____ _ ___ ____ _____________ ___ _ ____________ _ _____ ______________ _ _ ____


Colocando este esboço num sistema de coordenadas xy e esta reta com buracos sobre o eixo x, representaria parte do nosso problema em questão, pois para todo número racional, temos que a função vale 0. Falta saber o que fazer com esses pontos que retiramos.

Lembre-se que para uma função ser contínua ela não tem "buracos", ou seja, temos que desenhar toda a função "sem tirar o lápis do papel".

Então, quais os valores que esses pontos com "buracos" devem assumir para que esses "buracos" não existam mais sobre esta reta?


:idea:
*-)
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: função continua

Mensagempor MarceloFantini » Seg Jul 18, 2011 02:37

É impossível esboçar essa função, visto que todo intervalo real contém um número infinitos de números racionais e irracionais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: função continua

Mensagempor LuizAquino » Seg Jul 18, 2011 11:11

Temos a função:

g(x) = \begin{cases} 0, \textrm{ se } x \textrm{ \'e racional.} \\ x, \textrm{ se } x \textrm{ \'e irracional.} \end{cases}

Note que -|x| \leq g(x) \leq |x| .

Como \lim_{x\to 0} -|x| = \lim_{x\to 0} |x| = 0, pelo Teorema do Sanduíche segue que \lim_{x\to 0} g(x) = 0. Por outro lado, sabemos que g(0) = 0.

Portanto, \lim_{x\to 0} g(x) = g(0). Isso é o mesmo que dizer que g é contínua em x = 0.

Tome agora qualquer real c\neq 0 e qualquer real \delta > 0 . No intervalo (a-\delta,\, a + \delta) existem infinitos racionais e infinitos irracionais.

Considere que c seja irracional. Existem infinitos x racionais tais que 0 < |x-c| < \delta e |g(x) - g(c)| = |c| > \frac{|c|}{2} .

Por outro lado, considere que c seja racional. Existem infinitos x irracionais tais que 0 < |x-c| < \delta e |g(x) - g(c)| = |x| > |c| > \frac{|c|}{2} .

Em resumo: existem infinitos números x tais que 0 < |x-c| < \delta e |g(x) - g(c)| > \frac{|c|}{2} .

Logo, \lim_{x\to c} g(x) \neq g(c) . Isso é o mesmo que dizer que g não é contínua em x = c (lembrando-se que tomamos qualquer real c\neq 0 ).

A conclusão final disso tudo é que a função g é contínua apenas para x = 0.

Observação
alexandreredefor escreveu:obs: não consegui utilizar uma chave só.

Para colocar apenas uma chave, use o comando LaTeX:
Código: Selecionar todos
[tex]\begin{cases} caso_1 \\ caso_2 \\ caso_3 \\ \vdots \end{cases}[/tex]

O resultado desse comando é:
\begin{cases} caso_1 \\ caso_2 \\ caso_3 \\ \vdots \end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: função continua

Mensagempor Molina » Seg Jul 18, 2011 11:42

Bom dia!

MarceloFantini escreveu:É impossível esboçar essa função, visto que todo intervalo real contém um número infinitos de números racionais e irracionais.


Um esboço seria desenhar uma retas com alguns buracos, representando apenas os números racionais e os faltantes seriam os números irracionais.

Este esboço seria apenas para chegar a conclusão que para ser contínua, g(irracionais)=0.



:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D