• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Inversa

Função Inversa

Mensagempor OtavioBonassi » Qui Jul 14, 2011 23:04

Galera, tenho um sério caô em trabalhar com função inversa de polinomios ,como eu resolvo "Função inversa de x³ + 2x + 1"

Na verdade o exercício é o seguinte :

"Se f(x) = x³ + 2x + 1 e g é a função inversa de f, entao g'(1) é igual a :"

Não sei se tem alguma relaçao entre os dois coeficientes de funçoes inversas, tem ?

Valeu !
OtavioBonassi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jan 05, 2011 14:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Função Inversa

Mensagempor Molina » Sex Jul 15, 2011 12:22

Bom dia, Otavio.

De que livro você retirou esta questão? Pergunto isso pois a inversa dessa função é um tanto quanto complexa, como você pode ver clicando aqui.

Mas podemos perceber que a f intercepta o eixo y no ponto 1:

f(x) = x^3 + 2x + 1 \Rightarrow f(0) = 1

Como a inversa é simétrica em relação a y = x, temos que a g vai interceptar o eixo x no ponto 1.

Ou seja, g(1) =0


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função Inversa

Mensagempor MarceloFantini » Sex Jul 15, 2011 20:08

Imagino que a questão seja sobre Cálculo 1, visto que pelo o que eu li ele quer g'(1) e não g(1). Basta aplicar o teorema da derivada da função inversa (que eu não me lembro agora).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Inversa

Mensagempor LuizAquino » Sex Jul 15, 2011 21:51

Note que não é necessário determinar explicitamente a expressão da função g.

Queremos apenas calcular g'(1).

Como sugeriu Fantini, utilizando o teorema da derivada da função inversa, sabemos que [f^{-1}(x)]^\prime = \frac{1}{f^\prime\left(f^{-1}(x)\right)} .

Portanto, nesse exercício temos que g^\prime(x) = \frac{1}{f^\prime\left(g(x)\right)} .

Isso significa que g^\prime(1) = \frac{1}{f^\prime\left(g(1)\right)} .

Note que todo o seu trabalho irá se resumir a determinar a derivada de f e calculá-la em g(1). Em seguida, basta tomar o inverso desse número.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função Inversa

Mensagempor Molina » Sex Jul 15, 2011 22:11

Boa noite.

Peço desculpas por não ter visto o símbolo de derivada na função g. :n:


Bom final de semana a todos!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função Inversa

Mensagempor OtavioBonassi » Sáb Jul 16, 2011 12:38

Opa, desconhecia esse teorema da função inversa, acho que isso facilita bastante a resolução hehe.

Valeu !
OtavioBonassi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jan 05, 2011 14:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Função Inversa

Mensagempor LuizAquino » Sáb Jul 16, 2011 18:14

OtavioBonassi escreveu:Opa, desconhecia esse teorema da função inversa, acho que isso facilita bastante a resolução hehe.


Se você desejar estudar mais sobre a derivada de funções inversas, então assista a vídeo-aula "15. Cálculo I - Derivada da Função Inversa". Eu acredito que ela possa lhe ajudar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}