• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite duvidaa

Limite duvidaa

Mensagempor Isabela Sa » Qui Jul 14, 2011 02:58

Nao consigo intender algumas coisas sobre limite
baseando nessa aula http://www.youtube.com/watch?v=KSZNRo_o ... ideo_title

\lim_{x\rightarrow-2}\frac{x^2+1}{x+2}

n consigo encontra resposta como o dono da aula encontro. algm ajuda com a resposta? tenho essa duvida e n consigo responder tem uns 3 dias.

\lim_{x\rightarrow\infty}\frac{x^2+1}{x+2}

pela direita nem pela esquerda eu encontro os msm resultados
n consigo intender oq e feito na aula
algm pode me ajudar, os conceitos eu ja sei, mas n consigo aplica nesse exercicio
to achando q viro meio q um bloqueio ja. =/

algm ajuda?

thanks
Isabela Sa
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jun 23, 2011 12:24
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando

Re: Limite duvidaa

Mensagempor Guill » Qui Jul 14, 2011 11:42

Use a regra do L'Hospital:

\lim_{x\rightarrow\infty}\frac{x^2+1}{x+2}


Derive o numerador e o denominador:

\lim_{x\rightarrow\infty}\frac{2x}{1}


Substitua os valores:

2.\infty = \infty
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limite duvidaa

Mensagempor MarceloFantini » Qui Jul 14, 2011 13:39

Guill, infinito não é número, não pode substituir x por infinito. Em todo caso, outro jeito de resolver é colocar as maiores potências em evidência:

\lim_{x \to \infty} \frac{x^2 ( 1 + \frac{1}{x^2})}{x(1+\frac{2}{x})} = \lim_{x \to \infty} \frac{x (1 + \frac{1}{x^2})}{1 + \frac{2}{x}} = \infty
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite duvidaa

Mensagempor Isabela Sa » Qui Jul 14, 2011 14:47

e algm pode me ajudar na primeira resposta
n consigo e ngm me ajuda

thanks
Isabela Sa
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jun 23, 2011 12:24
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando

Re: Limite duvidaa

Mensagempor LuizAquino » Qui Jul 14, 2011 14:56

Isabela Sa escreveu:Nao consigo intender algumas coisas sobre limite
baseando nessa aula http://www.youtube.com/watch?v=KSZNRo_o ... ideo_title

\lim_{x\rightarrow-2}\frac{x^2+1}{x+2}

n consigo encontra resposta como o dono da aula encontro. algm ajuda com a resposta? tenho essa duvida e n consigo responder tem uns 3 dias.


Você está se referindo a vídeo-aula "22. Cálculo I - Construção de Gráficos".

Em verdade, nessa vídeo-aula há o cálculo dos limites laterais:
(a) \lim_{x\rightarrow -2^-}\frac{x^2+1}{x+2}

(b) \lim_{x\rightarrow -2^+}\frac{x^2+1}{x+2}

Para entender como calcular esses limites, é importante que você já tenha assistido a vídeo-aula "05. Cálculo I - Limites Infinitos".

Isabela Sa escreveu:\lim_{x\rightarrow\infty}\frac{x^2+1}{x+2}

pela direita nem pela esquerda eu encontro os msm resultados
n consigo intender oq e feito na aula


Primeiro, esse limite não foi calculado "pela direita" e nem "pela esquerda".

Nessa vídeo-aula foram calculados os limites:
(c) \lim_{x\to +\infty}\frac{x^2+1}{x+2}

(d) \lim_{x\to -\infty}\frac{x^2+1}{x+2}

Atenção: não confunda "tender a mais infinito" com "tender pela direita", e nem "tender a menos infinito" com "tender pela esquerda".

Novamente, para entender o cálculo desses limites é importante que você já tenha assistido a vídeo-aula "06. Cálculo I - Limites no Infinito".

Uma maneira de resolvê-los, além das que já foram mencionadas aqui, é utilizar o que foi dito na própria vídeo-aula 22, que é através da divisão entre os polinômios x² + 1 e x + 2. Através dessa divisão, sabemos que:
x² + 1 = (x - 2)(x + 2) + 5

Desse modo, para o limite (c), temos que:
\lim_{x\to +\infty}\frac{x^2+1}{x+2} = \lim_{x\to +\infty}\frac{(x-2)(x+2)+5}{x+2}

= \lim_{x\to +\infty}\frac{(x-2)(x+2)}{x+2} + \frac{5}{x+2}

= \lim_{x\to +\infty} (x-2) + \frac{5}{x+2}

= \lim_{x\to +\infty} (x-2) + \lim_{x\to +\infty}\frac{5}{x+2}

= +\infty + 0

= +\infty

Utilizando uma ideia análoga, você obterá que o limite (d) é tal que:
\lim_{x\to -\infty}\frac{x^2+1}{x+2} = -\infty
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite duvidaa

Mensagempor Isabela Sa » Qui Jul 14, 2011 15:06

Luiz Aquino
desde ontme eu to estudano e n consigo resolver esse exercicio
ja assisti todas as aulas e sei calcular limistes laterais porem esse nao sei como manipular algebricamente, tem como vc mostrar isso pra mim? obrigada

e seobre a divisao de x^2+1/x+2
eu encontrei (x-2) e com resto 5

entao n intendi tbm pq ficou (x-2)x+2+5

thanks
Isabela Sa
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jun 23, 2011 12:24
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando

Re: Limite duvidaa

Mensagempor LuizAquino » Qui Jul 14, 2011 15:13

Isabela Sa escreveu:desde ontme eu to estudano e n consigo resolver esse exercicio
ja assisti todas as aulas e sei calcular limites laterais porem esse nao sei como manipular algebricamente, tem como vc mostrar isso pra mim?

Note que no limite (a), o numerador tende a 5 e o denominador tende a 0 (sendo que o denominador é negativo quando x < -2). Desse modo, \lim_{x\to -2^{-}} \frac{x^2+1}{x+2} = -\infty .

Já no limite (b), o numerador também tende a 5 e o denominador também tende a 0 (sendo que o denominador é positivo quando x > -2). Desse modo, \lim_{x\to -2^{+}} \frac{x^2+1}{x+2} = +\infty .

Isabela Sa escreveu:e seobre a divisao de x^2+1/x+2
eu encontrei (x-2) e com resto 5

entao n intendi tbm pq ficou (x-2)x+2+5

Do conhecimento sobre divisão, sabemos que se p(x) dividido por d(x) resulta em quociente q(x) e resto r(x), então temos que:
p(x) = d(x)q(x) + r(x)

Na divisão do exercício, temos que p(x) = x² + 1, d(x) = x + 2, q(x) = x - 2 e r(x) = 5.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite duvidaa

Mensagempor Isabela Sa » Qui Jul 14, 2011 15:21

Mto obrigada Luiz Aquino
sao explicações assim como a sua q eu busco

thanks
Isabela Sa
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Jun 23, 2011 12:24
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando

Re: Limite duvidaa

Mensagempor LuizAquino » Qui Jul 14, 2011 15:25

Isabela Sa escreveu:Mto obrigada Luiz Aquino
sao explicações assim como a sua q eu busco


Por favor, não deixe de valorizar as contribuições do MarceloFantini e do Guill.

Além disso, você está estudando Cálculo sozinha? Caso você não esteja, porque você não procura o seu professor também?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D