• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada pela definição de limite

Derivada pela definição de limite

Mensagempor Andreyan » Ter Jul 12, 2011 17:55

Ola, estou com um exercício onde não consigo derivá-lo pela definição de limite. 1/\sqrt[]{x} ?

Atravez da regra do quociente chego facilmente na resposta 1/2x\sqrt[]{x}, porém talvez nao esteja manuseando corretamente pela definição de limite que é esta: \lim_{h\rightarrow0}f(x + h) - f(x)/h
Tive essa questão na minha ultima prova e até agora não consegui resolvê-la. obrigado desde já.
Andreyan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Jul 12, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em processos de produção
Andamento: cursando

Re: Derivada pela definição de limite

Mensagempor Andreyan » Ter Jul 12, 2011 17:59

(1/\sqrt[]{x + h} - 1/\sqrt[]{x})1/h  =  1/h\sqrt[]{x + h} - 1/h\sqrt[]{x}

Eu não passo dessa etapa.
Andreyan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Jul 12, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em processos de produção
Andamento: cursando

Re: Derivada pela definição de limite

Mensagempor LuizAquino » Ter Jul 12, 2011 18:45

Seja a função f(x) = \frac{1}{\sqrt{x}} .

Pela definição de derivada, temos que:
f^\prime(x) = \lim_{h\to 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h}

Efetuando-se a subtração entre as frações, obtemos:
f^\prime(x) = \lim_{h\to 0} \frac{\frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x+h}\sqrt{x}}}{h}

Mas, isso é o mesmo que:
f^\prime(x) = \lim_{h\to 0} \frac{\sqrt{x} - \sqrt{x+h}}{h\sqrt{x+h}\sqrt{x}}

Para terminar de resolver esse limite, multiplique tanto o numerador quanto o denominador por \sqrt{x} + \sqrt{x+h} .

Vale lembrar que a resposta final será:
f^\prime(x) =  -\frac{1}{2x\sqrt{x}}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada pela definição de limite

Mensagempor Andreyan » Qua Jul 13, 2011 13:05

\frac{\sqrt[]{x} - \sqrt[]{x + h}}{h\sqrt[]{x + h}\sqrt[]{x}} . 
\frac{\sqrt[]{x} + \sqrt[]{x + h}}{\sqrt[]{x} + \sqrt[]{x + h}}


\frac{x - x + h}{hx\sqrt[]{x + h} + h(x + h)\sqrt[]{x}}


\frac{h}{h (x.\sqrt[]{x + h} + (x + h).\sqrt[]{x}}


\frac{1}{x.\sqrt[]{x + h} + (x + h).\sqrt[]{x}}

Neste momento eu usei o limite e ficou assim:

\frac{1}{x.\sqrt[]{x} + x.\sqrt[]{x}}

\frac{1}{2x . \sqrt[]{x}}

acredito que esteja tudo certo, obrigado pela ajuda, sinto muita dificuldade no momento que vc disse de multiplicar o numerador e o denominador, pela mesma expressão. Não por multiplicar, mas sim "pelo que multiplicar", vários limites me atrapalham por causa disso, principalmente com radicais, alguma dica? eu nem sei qual o nome desta operação..rs.
Andreyan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Jul 12, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em processos de produção
Andamento: cursando

Re: Derivada pela definição de limite

Mensagempor LuizAquino » Qua Jul 13, 2011 15:27

Andreyan escreveu:\frac{\sqrt[]{x} - \sqrt[]{x + h}}{h\sqrt[]{x + h}\sqrt[]{x}} \cdot \frac{\sqrt[]{x} + \sqrt[]{x + h}}{\sqrt[]{x} + \sqrt[]{x + h}}

\frac{x - x + h}{hx\sqrt[]{x + h} + h(x + h)\sqrt[]{x}}

\frac{h}{h (x.\sqrt[]{x + h} + (x + h).\sqrt[]{x}}

Você errou o sinal.

\frac{\sqrt{x} - \sqrt{x + h}}{h\sqrt{x + h}\sqrt{x}} \cdot \frac{\sqrt{x} + \sqrt{x + h}}{\sqrt{x} + \sqrt{x + h}} = \frac{x - (x + h)}{hx\sqrt{x + h} + h(x + h)\sqrt{x}} = \frac{-h}{h[x\sqrt{x + h} + (x + h)\sqrt{x}]}

Andreyan escreveu:sinto muita dificuldade no momento que vc disse de multiplicar o numerador e o denominador, pela mesma expressão. Não por multiplicar, mas sim "pelo que multiplicar", vários limites me atrapalham por causa disso, principalmente com radicais, alguma dica?

Dica: revisar os conteúdos do ensino fundamental e médio. Um bom lugar para começar é o canal do Nerckie no YouTube:
http://www.youtube.com/nerckie

Andreyan escreveu:eu nem sei qual o nome desta operação..rs.

No caso desse exercício, procure por "racionalização de denominadores".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59