por may » Ter Jul 12, 2011 21:35
Oi
Eu estou com mais uma dificuldade em geometria analitica.Aki vai o exercicio:
1 – Estabeleça as equações das parábolas abaixo:
a) V(0,0) e diretriz: y = -2
b) V(0,0) e F(-3,0)
c) V(-2,3) e F(-2,1)
d) V (0,0), eixo y = 0, passando por P(4,5)
e) eixo paralelo a y = 0 e passando pelos pontos: (-2,4), (-3,2) e (-11,-2)
Resolução:
a)

=2px

=-2
p= -4

=2px

=2(-4)y

=-8y
b)

=2px

=-3

=2(-6)x

=-12x
A partir dai não sei o q fazer
Desde já agradeço

-
may
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Jun 20, 2011 19:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia de energias
- Andamento: cursando
por LuizAquino » Qui Jul 14, 2011 21:55
a) V(0,0) e diretriz: y = -2
Dica: uma parábola de vértice V = (0, 0), foco F = (0, p) e diretriz y = -p (com p > 0), tem equação

. Reveja a sua resolução.
b) V(0,0) e F(-3,0)
Dica: uma parábola de vértice V = (0, 0), foco F = (-p, 0) e diretriz x = p (com p > 0), tem equação

. Reveja a sua resolução.
c) V(-2,3) e F(-2,1)
Dica: determine a equação da parábola de vértice V = (0, 0) e foco F = (0, -2) (que terá uma equação do tipo

). Em seguida, faça a translação dessa parábola de modo que o seu vértice passe a ser V = (-2, 3) (ou seja, a equação será algo do tipo

).
d) V (0,0), eixo y = 0, passando por P(4,5)
Dica: note que essa parábola terá equação

. Para determinar
p, basta substituir na equação x por 4 e y por 5 (pois o ponto (4, 5) deve pertencer a essa parábola)
e) eixo paralelo a y = 0 e passando pelos pontos: (-2,4), (-3,2) e (-11,-2)
Dica: note que essa parábola terá equação

.
Para determinar
a,
b e
c basta utilizar os três pontos conhecidos. Por exemplo, ao dizer que a parábola passa por (-2, 4), temos que

. Utilizando os outros dois pontos, obtemos mais duas equações. Desse nodo, no final ficamos com um sistema de três equações e três incógnitas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por may » Sex Jul 15, 2011 00:46
Obrigada por responder
Vou tentar aki com suas dicas

-
may
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Jun 20, 2011 19:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia de energias
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Parábola]Determinar vértice de parábola (Urgente!)
por migvas99 » Seg Out 08, 2012 14:37
- 1 Respostas
- 2652 Exibições
- Última mensagem por young_jedi

Seg Out 08, 2012 17:09
Funções
-
- [Parábola] Encontrando o ponto na parábola
por Ana_Rodrigues » Ter Nov 22, 2011 20:44
- 1 Respostas
- 4820 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 21:38
Geometria Analítica
-
- Parábola
por flavio2010 » Sáb Jul 17, 2010 19:11
- 1 Respostas
- 1855 Exibições
- Última mensagem por Tom

Sáb Jul 17, 2010 22:20
Funções
-
- Parábola
por flavio2010 » Dom Jul 18, 2010 19:42
- 1 Respostas
- 1753 Exibições
- Última mensagem por Tom

Dom Jul 18, 2010 23:31
Funções
-
- Parábola
por flavio2010 » Sex Jul 23, 2010 19:16
- 1 Respostas
- 1862 Exibições
- Última mensagem por MarceloFantini

Sáb Jul 24, 2010 01:40
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.