• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[água em vasos cilíndricos] Ajuda!! Urgente!

[água em vasos cilíndricos] Ajuda!! Urgente!

Mensagempor Rose » Ter Jun 07, 2011 00:25

Olá,
Estou tentando calcular este probelma, mas esta dificil!! Por exemplo, como vou fazer para achar o volume de água que deve ser passado do
vaso de menor raio para o outro a fim de que surja uma diferença de 26 cm entre os níveis
da água num e noutro vaso?

Não sei fazer! Me ajudem! O problema segue abaixo:

!) Em dois vasos cilíndricos, de eixo vertical, há água até a mesma altura; um dos
vasos tem raio 30 cm e o outro 45 cm. Qual é o volume de água que deve ser passado do
vaso de menor raio para o outro a fim de que surja uma diferença de 26 cm entre os níveis
da água num e noutro vaso?
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando

Re: Ajuda!! Urgente!

Mensagempor carlosalesouza » Ter Jun 07, 2011 01:44

Antes de começar... esse problema não exige logaritmo...

observemos o seguinte:
V = \pi .r^2.h \Rightarrow h = \frac{V}{\pi.r^2}

A altura inicial de ambos e a mesma...

Note que estamos procurando um volume x que, acrescido ao volume do cilindro mais largo e retirado do volume do cilindro mais estreito implique em variações das alturas que, somadas, representarão 26cm... ok?

Vemos, pela fórmula acima, que \frac{x}{\pi.r^2} corresponderá ao impacto que um volume x terá no nível da água, correto?

Assim:
\\
\frac{x}{r_a^2.\pi}+\frac{x}{r_b^2.\pi} = 26\\
\frac{x}{45^2\pi}+\frac{x}{30^2\pi} = 26\\
\frac{2025x + 900x}{2025.900\pi} = 26\\
\frac{2925x}{1822500\pi} = 26\\
2925x = 26.1822500\pi\\
2925x = 47385000\pi\\
x = \frac{47385000\pi}{2925} = 16200\pi

Ou seja, serão necessários 16.200\pi cm^3 = 16.200\pi ml = 16,2\pi l

Esta é a quantidade de água que precisa ser transferida para ocasionar a diferença de altura desejada...

ok?

Um grande abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Ajuda!! Urgente!

Mensagempor Rose » Ter Jun 07, 2011 14:04

Olá, Carlos!!

Muitíssimo obrigada!! Valeu mesmo!!Não tinha nenhuma idéia por onde começar a resolver este problema.
Abraços
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando

Re: Ajuda!! Urgente!

Mensagempor Angelica Abdalla » Ter Jul 12, 2011 21:33

Boa noite a todos,
Vou colocar o problema e a resoluçaõ que fiz. Vcs podem ver se aonde errei?
PROBLEMA:
Em dois vasos cilíndricos, de eixo vertical, há água até a mesma altura; um dos vasos tem raio 30 cm e o outro 45 cm. Qual é o volume de água que deve ser passado do vaso de menor raio para o outro a fim de que surja uma diferença de 26 cm entre os níveis da água num e noutro vaso?
1) Escreva as equações que correspondem à situação exposta no problema (e que, portanto, permita resolvê-lo), explicando claramente quais são os elementos envolvidos e qual o raciocínio usado para estabelecer tal equação.
2) Resolva as equações para obter a resposta à pergunta posta no problema.
Resolução:

Para resolvermos esse problema, vamos utilizar os conhecimentos de Geometria Espacial, sobre cilindros, no qual aplica-se no 2? ano do Ensino Médio.
Sejam R um círculo contido num plano ? e (XY) ? um segmento de uma reta s concorrente com ?. Denominamos Cilindro o conjunto dos pontos dos segmentos paralelos e congruentes a (XY) ? que têm uma extremidade em R e que estão num mesmo semi-espaço determinado por ?.

Para encontrarmos o volume do cilindro, precisamos conhecer o raio r de sua base, em vez que o volume é dado por:
V_cilindro=( área da base)×(altura)
Sabendo-se que a área da base de um cilindro é A_base=?r^2, logo, temos que o raio do cilindro é 30 cm.
Calculando a Área da base do primeiro cilindro:
A_base=??30?^2
A_base=900? cm²

Calculando o Volume:
Sabendo-se que para calcular o volume, utilizamos a seguinte fórmula:
V_cilindro=( área da base)×(altura)
Logo:

V_cilindro=900?.h cm³

Sabendo-se que a área da base de um cilindro é A_base=?r^2, logo, temos que o raio do segundo cilindro é 45 cm.
Calculando a Área da base do segundo cilindro:
A_base=??45?^2
A_base=2025? cm²

Calculando o Volume do segundo cilindro:
V_cilindro=( área da base)×(altura)
Logo:

V_cilindro=2025?.h cm³

Sabemos que h é a altura inicial dos dois cilindros
V_1, significa o volume inicial do primeiro cilindro: 900?h cm³
V_2, significa o volume inicial do segundo cilindro: 2025?h cm³
Chamaremos x o decréscimo do nível no primeiro vaso
e y acréscimo do nível no segundo vaso.
? V?_1', significa o volume do primeiro cilindro após a passagem do líquido: 900?(h-x)cm³
V_2', significa o volume do segundo cilindro após a passagem do líquido: 2025?(h+y) cm³
Logo:

V_1+V_2=V_1'+V_2'
Sendo que V_1=900? e V_1=900(h-x)volume após a passagem do líquido;
900?h+2025?h=900?(h-x)+2025?(h+y)

900?h+2025?h=900?h-900?x+2025?h+2025?y

900?h+2025?h-900?h-2025?h=-900?x+2025?y

900?x=2025?y


Sabendo-se que x+y=26, e substituindo o x teremos

x+y=26 ? x=26-y

900?x=2025?y ,simplificando ambos por 225 obteremos
4x=9y ? 4x/9=y
Resolvendo este sistema:

x=26-4x/9?9x/9=234/9-4x/9
9x+4x=234
13x=234
x=234/13
x=18 cm
Agora sabemos quanto vale o x, Substituindo na equação acima:

x=26-y
18=26-y
18-26=-y
-8=-y (×-1)
y=8 cm

Encontramos o valor de x e y e substituindo-os obteremos o valor do volume da água que sairá do recipiente de menor raio para o outro;
900?x cm³=2025?ycm³

900?×18=2025?×8

16.200? cm³=16200? cm³
Resposta: Podemos concluir que o volume de água que deve ser passado do cilindro de menor raio para o outro a fim de que surja uma diferença de 26 cm corresponde a 16200? cm³
Angelica Abdalla
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 22:48
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Ajuda!! Urgente!

Mensagempor Angelica Abdalla » Ter Jul 12, 2011 21:34

Aguardo a resposta
Angelica Abdalla
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 22:48
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.