• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz invertível

Matriz invertível

Mensagempor -civil- » Qua Jul 06, 2011 11:00

Seja M uma matriz quadrada de ordem n, com n \in N, tal que M^2 = 0. Se M - Idn é invertível, mostre que
a matriz Idn + M é, também invertível.
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Matriz invertível

Mensagempor MarceloFantini » Qua Jul 06, 2011 12:16

Vamos considerar (M - Id)(M + Id) = M^2 + M \cdot Id - Id \cdot M - Id^2 = M^2 + M - M - Id^2 = - Id^2, que é invertível. Como sabemos que \det (AB) = \det A \cdot \det B, conclui-se que \det (AB) \neq 0 e \det A \neq 0, portanto \det B \neq 0 e segue que M + Id é invertível.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matriz invertível

Mensagempor -civil- » Qui Jul 07, 2011 22:45

Desculpa, mas aquela parte do determinante eu não entendi muito bem não. Qual a relação entre o determinante ser diferente de zero e a matriz ser invertível?
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Matriz invertível

Mensagempor MarceloFantini » Sex Jul 08, 2011 01:35

Existe um teorema que diz que uma matriz é invertível se, e somente se, seu determinante for diferente de zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.