• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Jul 05, 2011 15:25

\lim_{x\rightarrow{p}}\frac{x^4-p^4}{x-p}

Só consegui chegar em indeterminação, e gostaria de resolver sem utilizar L'Hopital.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Ter Jul 05, 2011 17:40

Dica

Aplique o produto notável: a^4 - b^4 = (a - b)\left(a^3 + a^2b + ab^2 + b^3\right) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Fabio Cabral » Qui Jul 07, 2011 10:42

Como dito acima, ultilize o produto notável: a^4-b^4 = (a-b)(a+b)(a^2+b^2)

x^4-p^4 = (x-p)(x+p)(x^2+p^2)

Logo:

\lim_{x\rightarrow p} \frac{x^4-p^4}{x-p} = \lim_{x\rightarrow p} \frac{(x-p)(x+p)(x^2+p^2)}{x-p}=

\lim_{x\rightarrow p}(x+p)(x^2+p^2)=(p+p)(p^2+p^2)=(2p)(2p^2)=4p^3

Ok?
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qui Jul 07, 2011 13:40

Obrigado pela ajuda Fábio
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?