• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Sex Jul 01, 2011 03:27

Fazendo exercícios do livro de Guidorizzi

Deparei com tal dúvida:

\lim_{x\rightarrow3}\frac{\sqrt[3]{x}-\sqrt[3]{3}}{x-3}

Em que desenvolvendo obtive:

\lim_{x\rightarrow3}\frac{\sqrt[3]{x}-\sqrt[3]{3}}{x-3}. \frac{\sqrt[3]{x}+\sqrt[3]{3}}{\sqrt[3]{x}+\sqrt[3]{3}}

\lim_{x\rightarrow3}\frac{(x-3)}{(x-3)(\sqrt[3]{x}+\sqrt[3]{3})}

\lim_{x\rightarrow3}\frac{1}{\sqrt[3]{x}+\sqrt[3]{3}}= \frac{1}{\sqrt[3]{3}+\sqrt[3]{3}} = \frac{1}{2\sqrt[3]{3}}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Sex Jul 01, 2011 03:29

Porém a resposta correta seguindo o gabarito do livro seria \frac{1}{3\sqrt[3]{9}}

Alguém poderia confirmar a resposta correta e se possível mostrar onde eu errei.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Fabio Cabral » Sex Jul 01, 2011 11:40

Claudinho, não há necessidade de multiplicar pelo conjugado.
Apenas aplique o produto notável no denominador e aplique o limite.

a^3-b^3 = (a-b)(a^2+ab+b^2)
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 16:18

Correto Fábio Cabral. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 16:23

Deixando mais claro para os demais usuários do fórum.
Aplicando o produto notável no denominador --> a^3-b^3 = (a-b)(a^2+ab+b^2)

\lim_{x\rightarrow3}\frac{\sqrt[3]{x}-\sqrt[3]{3}}{x-3}

\lim_{x\rightarrow3}\frac{\sqrt[3]{x}-\sqrt[3]{3}}{(\sqrt[3]{x}-\sqrt[3]{3})(\sqrt[3]{x^2}+\sqrt[3]{3x}+\sqrt[3]{3^2})}

\lim_{x\rightarrow3}\frac{1}{(\sqrt[3]{x^2}+\sqrt[3]{3x}+\sqrt[3]{3^2})}= \frac{1}{3\sqrt[3]{9}}

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}