• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite complicado

Limite complicado

Mensagempor Piva » Qui Jun 30, 2011 18:29

Alguem pode me ajudar com o limite:
\lim_{x\rightarrow+\infty}\frac{x}{{e}^{{x}^{2}}}
e
\lim_{x\rightarrow-\infty}\frac{x}{{e}^{{x}^{2}}}


Eu faço o l'hospital mas continua a dar uma indeterminação....

podem me ajudar?

obrigado!
Piva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 29, 2011 18:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Limite complicado

Mensagempor ant_dii » Qui Jun 30, 2011 19:48

Quando você aplica L'hospital, o limite fica

\lim_{x\rightarrow\infty}\frac{1}{2x e^{x^2}}=\frac{1}{\lim_{x\rightarrow\infty}2x e^{x^2}}=\frac{1}{2(\lim_{x\rightarrow\infty}x) (\lim_{x\rightarrow\infty} e^{x^2})}=0.

Da mesma forma quando x\rightarrow -\infty, \frac{x}{e^{x^2}}\rightarrow 0.
Espero ter ajudado.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Limite complicado

Mensagempor MarceloFantini » Qui Jun 30, 2011 19:52

Vamos aplicar L'Hospital na primeira:

\lim_{x \to \infty} \frac{x}{e^{x^2}} = \lim_{x \to \infty} \frac{1}{e^{x^2} \cdot 2x}

Note que aqui já não há mais indeterminação, pois o numerador é constante e o denominador vai para infinito, logo o limite é zero.

No segundo limite, você chegará ao mesmo resultado, porém note que você terá menos infinito vezes mais infinito que é menos infinito, mas também zera.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite complicado

Mensagempor Claudin » Sex Jul 01, 2011 03:55

Seria o mesmo limite representado neste tópico ou não?

viewtopic.php?f=120&t=5270
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite complicado

Mensagempor Piva » Sáb Jul 02, 2011 19:30

Não claudin, no seu topico não tem o e. Era isso mesmo, não tinha percebido minha falha ao fazer o l'hospital.

obrigado
Piva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 29, 2011 18:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Limite complicado

Mensagempor Fabio Cabral » Dom Jul 03, 2011 02:38

Piva,
Costumo analisar esse tipo de questão antes de fazer qualquer cálculo. Verificar indeterminação (se há), tipo de indeterminação, se é contínua ou descontínua no ponto (etc), enfim..
Isso ajuda a determinar qual propriedade será mais vantajosa aplicar para resolver.

Fica a dica!
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?