por Claudin » Sex Jul 01, 2011 03:41
Fazendo exercícios do livro de Guidorizzi
Deparei com tal dúvida:
![\lim_{x\rightarrow2}\frac{\sqrt[4]{x}-\sqrt[4]{2}}{x-2} \lim_{x\rightarrow2}\frac{\sqrt[4]{x}-\sqrt[4]{2}}{x-2}](/latexrender/pictures/56372e56ab2c4713330442ad0f2cbff3.png)
Em que desenvolvendo obtive:
![\lim_{x\rightarrow2}\frac{\sqrt[4]{x}-\sqrt[4]{2}}{x-2}.\frac{\sqrt[4]{x}+\sqrt[4]{2}}{\sqrt[4]{x}+\sqrt[4]{2}} \lim_{x\rightarrow2}\frac{\sqrt[4]{x}-\sqrt[4]{2}}{x-2}.\frac{\sqrt[4]{x}+\sqrt[4]{2}}{\sqrt[4]{x}+\sqrt[4]{2}}](/latexrender/pictures/52ef623ab153f9c4531304221597b8e6.png)
![\lim_{x\rightarrow2}\frac{(x-2)}{(x-2)(\sqrt[4]{x}+\sqrt[4]{2})} \lim_{x\rightarrow2}\frac{(x-2)}{(x-2)(\sqrt[4]{x}+\sqrt[4]{2})}](/latexrender/pictures/e982695557dd0a2ffcb3eb8bee8731ae.png)
![\lim_{x\rightarrow2}\frac{1}{\sqrt[4]{x}+\sqrt[4]{2}} = \frac{1}{\sqrt[4]{2}+\sqrt[4]{2}}= \frac{1}{2\sqrt[4]{2}} \lim_{x\rightarrow2}\frac{1}{\sqrt[4]{x}+\sqrt[4]{2}} = \frac{1}{\sqrt[4]{2}+\sqrt[4]{2}}= \frac{1}{2\sqrt[4]{2}}](/latexrender/pictures/6ff985febe490f73c6cf84324c045dfa.png)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Sex Jul 01, 2011 03:42
Porém a resposta correta seguindo o gabarito do livro seria
![\frac{1}{4\sqrt[4]{8}} \frac{1}{4\sqrt[4]{8}}](/latexrender/pictures/436752b736f30067c2793a1056bbcb01.png)
Alguém poderia confirmar a resposta correta e se possível mostrar onde eu errei.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Fabio Cabral » Sex Jul 01, 2011 11:07
Claudinho, lembre-se do produto notável:

" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por Fabio Cabral » Sex Jul 01, 2011 11:31
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6639 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4786 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 5114 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7249 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4429 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.