por Claudin » Sex Jul 01, 2011 03:41
Fazendo exercícios do livro de Guidorizzi
Deparei com tal dúvida:
![\lim_{x\rightarrow2}\frac{\sqrt[4]{x}-\sqrt[4]{2}}{x-2} \lim_{x\rightarrow2}\frac{\sqrt[4]{x}-\sqrt[4]{2}}{x-2}](/latexrender/pictures/56372e56ab2c4713330442ad0f2cbff3.png)
Em que desenvolvendo obtive:
![\lim_{x\rightarrow2}\frac{\sqrt[4]{x}-\sqrt[4]{2}}{x-2}.\frac{\sqrt[4]{x}+\sqrt[4]{2}}{\sqrt[4]{x}+\sqrt[4]{2}} \lim_{x\rightarrow2}\frac{\sqrt[4]{x}-\sqrt[4]{2}}{x-2}.\frac{\sqrt[4]{x}+\sqrt[4]{2}}{\sqrt[4]{x}+\sqrt[4]{2}}](/latexrender/pictures/52ef623ab153f9c4531304221597b8e6.png)
![\lim_{x\rightarrow2}\frac{(x-2)}{(x-2)(\sqrt[4]{x}+\sqrt[4]{2})} \lim_{x\rightarrow2}\frac{(x-2)}{(x-2)(\sqrt[4]{x}+\sqrt[4]{2})}](/latexrender/pictures/e982695557dd0a2ffcb3eb8bee8731ae.png)
![\lim_{x\rightarrow2}\frac{1}{\sqrt[4]{x}+\sqrt[4]{2}} = \frac{1}{\sqrt[4]{2}+\sqrt[4]{2}}= \frac{1}{2\sqrt[4]{2}} \lim_{x\rightarrow2}\frac{1}{\sqrt[4]{x}+\sqrt[4]{2}} = \frac{1}{\sqrt[4]{2}+\sqrt[4]{2}}= \frac{1}{2\sqrt[4]{2}}](/latexrender/pictures/6ff985febe490f73c6cf84324c045dfa.png)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Sex Jul 01, 2011 03:42
Porém a resposta correta seguindo o gabarito do livro seria
![\frac{1}{4\sqrt[4]{8}} \frac{1}{4\sqrt[4]{8}}](/latexrender/pictures/436752b736f30067c2793a1056bbcb01.png)
Alguém poderia confirmar a resposta correta e se possível mostrar onde eu errei.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Fabio Cabral » Sex Jul 01, 2011 11:07
Claudinho, lembre-se do produto notável:

" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por Fabio Cabral » Sex Jul 01, 2011 11:31
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6472 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4551 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4842 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7027 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4260 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.