Determinar o subespaço G(A)
Eu igualei o subespaço G(A) = a (-1,3,-1) + a2 (1,2,4)
E dai eu tirei que x = -a + a2 ; y = 3a + 2a2 ; z = -a + 4a2
E fiz uma igualdade relacionando x, y e z para assim fazer o subespaço G(A) = { (x,y,z)
/ 2x - 3y + 5z = 0 }Porém a resposta do exercício é G(A) = { (x,y,z)
/ 10x + 3y - z = 0 }Alguém pode dar a resolução do problema explicando onde eu errei?

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.