• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com limite de função trigonométrica

Ajuda com limite de função trigonométrica

Mensagempor sofa » Qua Jun 29, 2011 04:42

Não estou conseguindo sair da indeterminação

\lim_{x\rightarrow \pi} \frac{cos\frac{x}{2}}{\frac{x}{2}-\frac{\pi}{2}}

transformando aquele cosseno em um seno e invertendo ele eu cheguei ate
\lim_{x\rightarrow \pi} \frac{-sen\left( \frac{x}{2}-\frac{\pi}{2} \right)}{\frac{x}{2}-\frac{\pi}{2}}
(fiquei na duvida se poderia inverter o seno)
se estivesse tendendo a zero eu diria que o resultado é -1 (e é realmente -1) mas como esta tendendo a pi eu fquei na duvida sobre o que fazer
resultado pelo wolfram http://www.wolframalpha.com/input/?i=li ... -pi%2F2%29
mas preciso saber sem ser por l'Hôpital.
sofa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 04:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: Ajuda com limite de função trigonométrica

Mensagempor MarceloFantini » Qua Jun 29, 2011 04:59

Como vocÊ transformou o cosseno em seno?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda com limite de função trigonométrica

Mensagempor sofa » Qua Jun 29, 2011 05:07

Sim, transformei, ficou do jeito ali da segunda equação
o seno ali ta negativo mas eu acho que ta errado isso que eu fiz, o certo é
\lim_{x\rightarrow \pi} \frac{sen\left( \frac{\pi}{2}-\frac{x}{2} \right)}{\frac{x}{2}-\frac{\pi}{2}}
mas mesmo assim não consigo sair disso, n sei se estou indo pelo caminho certo
sofa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 04:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: Ajuda com limite de função trigonométrica

Mensagempor MarceloFantini » Qua Jun 29, 2011 05:19

Agora entendi. O que você fez está certo: primeiro, usou que cosseno é apenas seno deslocado de \frac{\pi}{2}, e portanto \cos (\frac{x}{2}) = sen \, (\frac{\pi}{2} - \frac{x}{2}). Agora só faltou lembrar que sen \, (-y) = - sen \, (y), e portanto sen \, (\frac{\pi}{2} - \frac{x}{2}) = sen \, - (\frac{x}{2} - \frac{\pi}{2}) = - sen \, (\frac{x}{2} - \frac{\pi}{2}). Com isso, você cai no limite fundamental do seno e termina a questão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda com limite de função trigonométrica

Mensagempor sofa » Qua Jun 29, 2011 05:29

mas para cair no limite fundamental do seno x deveria estar tendendo a 0 e neste caso esta tendendo a pi
sofa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 04:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: Ajuda com limite de função trigonométrica

Mensagempor MarceloFantini » Qua Jun 29, 2011 06:08

Essa é uma confusão que acontece constantemente. Não é a variável que tem que tender a zero. Note que se você fizer o limite com x tendendo a zero NÃO sairá o limite fundamental. O importante a saber é: o que tem que estar tendendo a zero é o denominador e o que estiver dentro do seno. Se tivessemos um limite assim:

\lim \frac{sen \, \left( x^{\frac{5}{7}} - \frac{3}{4} \right)}{x^{\frac{5}{7}} - \frac{3}{4}}

Para que isto seja um limite fundamental, não devemos ter x \to 0 mas sim x \to \sqrt[5]{\left(\frac{3}{4}\right)^7} pois é ele quem zera quem está dentro do seno e quem está no denominador.

Espero que isso tenha esclarecido a sua dúvida e resolvido sobre porque está certo. :)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda com limite de função trigonométrica

Mensagempor sofa » Qua Jun 29, 2011 06:25

Entendi agora, estava no caminho certo então, só faltava esclarecer isso
Obrigado Marcelo
sofa
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 04:18
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D