• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão dos ponteiros do Relógio (CN - 1987)

Questão dos ponteiros do Relógio (CN - 1987)

Mensagempor igorcamilo » Seg Jun 27, 2011 21:08

Os ponteiros das horas, dos minutos e dos segundos de um relógio indicam zero hora. Até às horas do mesmo dia, os ponteiros dos minutos e dos segundos terão se encontrado um número de vezes igual a:
a)524
b)531
c)540
d)573
e)590
igorcamilo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Jun 04, 2011 19:47
Formação Escolar: ENSINO MÉDIO
Área/Curso: matemática
Andamento: cursando

Re: Questão dos ponteiros do Relógio (CN - 1987)

Mensagempor Molina » Ter Jun 28, 2011 21:28

Boa noite, Igor.

To me achando um tremendo idiota na frente de um relógio vendo os ponteiros andarei. Isso tudo porque da forma que eu pensei o resultado obtido não consta nas alternativas, veja:

A cada minuto o ponteiro dos segundos passa uma vez em todos os pontos do relógio, ou seja, a cada minuto ele vai passar uma única vez pelo ponto em que o ponteiro do minuto estiver. Isso nos leva a crer que a cada 60 minutos (1 hora) o ponteiro dos segundos passou 60 vezes pelo ponteiro dos minutos. E isso nos leva a crer mais ainda que até ao meio-dia (12 horas depois) os ponteiros terão se encontrado 12*60 = 720~vezes.


Alguma outra forma de pensar? :n:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Questão dos ponteiros do Relógio (CN - 1987)

Mensagempor FilipeCaceres » Ter Jun 28, 2011 23:30

Olá Molina,

Você não encontrou o resultado pois está faltando dados no enunciado :-D , observe que não foi dito que intervalo de tempo era até o meio-dia.

Olá igorcamilo,

Até às ??horas do mesmo dia


Você poderia conferir o seu enunciado.

Abraço à todos.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Questão dos ponteiros do Relógio (CN - 1987)

Mensagempor Molina » Ter Jun 28, 2011 23:34

Boa noite.

FilipeCaceres escreveu:Olá Molina,

Você não encontrou o resultado pois está faltando dados no enunciado :-D , observe que não foi dito que intervalo de tempo era até o meio-dia.

Olá igorcamilo,

Até às ??horas do mesmo dia


Você poderia conferir o seu enunciado.

Abraço à todos.


Preciso voltar ao oftalmologista, pois li MEIO DIA ao invés de MESMO DIA. :lol:

Valeu pelo toque, Filipe.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.