• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão dos ponteiros do Relógio (CN - 1987)

Questão dos ponteiros do Relógio (CN - 1987)

Mensagempor igorcamilo » Seg Jun 27, 2011 21:08

Os ponteiros das horas, dos minutos e dos segundos de um relógio indicam zero hora. Até às horas do mesmo dia, os ponteiros dos minutos e dos segundos terão se encontrado um número de vezes igual a:
a)524
b)531
c)540
d)573
e)590
igorcamilo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Jun 04, 2011 19:47
Formação Escolar: ENSINO MÉDIO
Área/Curso: matemática
Andamento: cursando

Re: Questão dos ponteiros do Relógio (CN - 1987)

Mensagempor Molina » Ter Jun 28, 2011 21:28

Boa noite, Igor.

To me achando um tremendo idiota na frente de um relógio vendo os ponteiros andarei. Isso tudo porque da forma que eu pensei o resultado obtido não consta nas alternativas, veja:

A cada minuto o ponteiro dos segundos passa uma vez em todos os pontos do relógio, ou seja, a cada minuto ele vai passar uma única vez pelo ponto em que o ponteiro do minuto estiver. Isso nos leva a crer que a cada 60 minutos (1 hora) o ponteiro dos segundos passou 60 vezes pelo ponteiro dos minutos. E isso nos leva a crer mais ainda que até ao meio-dia (12 horas depois) os ponteiros terão se encontrado 12*60 = 720~vezes.


Alguma outra forma de pensar? :n:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Questão dos ponteiros do Relógio (CN - 1987)

Mensagempor FilipeCaceres » Ter Jun 28, 2011 23:30

Olá Molina,

Você não encontrou o resultado pois está faltando dados no enunciado :-D , observe que não foi dito que intervalo de tempo era até o meio-dia.

Olá igorcamilo,

Até às ??horas do mesmo dia


Você poderia conferir o seu enunciado.

Abraço à todos.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Questão dos ponteiros do Relógio (CN - 1987)

Mensagempor Molina » Ter Jun 28, 2011 23:34

Boa noite.

FilipeCaceres escreveu:Olá Molina,

Você não encontrou o resultado pois está faltando dados no enunciado :-D , observe que não foi dito que intervalo de tempo era até o meio-dia.

Olá igorcamilo,

Até às ??horas do mesmo dia


Você poderia conferir o seu enunciado.

Abraço à todos.


Preciso voltar ao oftalmologista, pois li MEIO DIA ao invés de MESMO DIA. :lol:

Valeu pelo toque, Filipe.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)