• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de PA PUC-RS

Questão de PA PUC-RS

Mensagempor lucas7 » Dom Jun 26, 2011 16:13

44) Um funcionário da Biblioteca Central deseja distribuir 200 livros nas prateleiras de acordo com o seguinte critério: na primeira prateleira, colocará 11 livros; na segunda prateleira, 13; na terceira, 15; e assim sucessivamente, até distribuir todos os livros em x prateleiras. Então, o número total de prateleiras usadas nessa distribuição é:


Bem, nota-se que é uma P.A de razão 2 e a soma dos termos vale 200.
O problema é que não sei como fazer o cálculo, nem qual a forma para fazer que a soma da PA dê 200 sem saber o último termo, alguém pode me ajudar? Obrigado desde já
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Questão de PA PUC-RS

Mensagempor FilipeCaceres » Dom Jun 26, 2011 16:28

Do enunciado tiramos,
11+13+15+...+k=200

Sabemos que,
a_n=a_1+(n-1)r
k=11+(n-1)2
k=2n+9

Assim temos,
S=\frac{(a_1+a_n)n}{2}

200=\frac{(11+2n+9)n}{2}

Desenvolvendo temos,
n^2+10n-200=0

n=-20 não convém pois temos um número positivo de prateleiras.
\boxed{n=10}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Questão de PA PUC-RS

Mensagempor lucas7 » Seg Jun 27, 2011 18:06

Muito obrigado!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}