por GABRUEL » Sáb Jun 25, 2011 15:09
Como transformar a dízima - 2,

na sua franção geratriz?
Eu sei que a resposta é

só não sei como transformá-la.
-
GABRUEL
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Jun 17, 2011 15:32
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: 8ª série
- Andamento: cursando
por FilipeCaceres » Sáb Jun 25, 2011 15:18
Temos,

Podemos escrever assim,

Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por GABRUEL » Sáb Jun 25, 2011 15:35
Não entendi

nem

OBS: estou no 2º ano... e sala de aula em que estudo parece mais um circo!
só eu levo à sério e tenho muita dificuldade em matemática.
Na verdade eu não entendi nada da questão =(
Editado pela última vez por
GABRUEL em Sáb Jun 25, 2011 15:55, em um total de 1 vez.
-
GABRUEL
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Jun 17, 2011 15:32
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: 8ª série
- Andamento: cursando
por Molina » Sáb Jun 25, 2011 15:55
Boa tarde.
Se me permite vou explicar o que o colega fez:
Você que transformar -2,333... em uma fração. Para isso o Filipe "repartiu" o número em duas partes:

A primeira tarde fica inalterada. A segunda (0,333...) ele transformou na fração

. Faça na calculadora 3 dividido por 9 e veja que vai aparecer 0,333... [ou
clique aqui].
Ou seja,

. Substituindo naquele repartição que ele tinha feito:




Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por FilipeCaceres » Sáb Jun 25, 2011 15:56
Temos,

certo.
O que eu fiz foi separa a parte inteira da parte fracionária,ficando com isto,

tudo certo até aqui?
Agora devemos encontrar a função geratriz de

Para isso vamos chamá-lo de x, assim temos,


Subtraindo temos,


como queríamos encontrar,desta forma encontramos,

Entendeu agora?
Leia isto
http://pt.wikipedia.org/wiki/D%C3%ADzima_peri%C3%B3dica
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por GABRUEL » Sáb Jun 25, 2011 16:05
x=0,3333...
10x=3,3333...
Subtraindo temos,
9x=3
Como assim 9x? da onde surgiu?
como que 9x=3 x = 1/3?
Eu tomei 3 bomba já! tenho 20 anos e to no 2º ano.
meu pai paga prof particular mais eu não aprendo matemática.
Sou muito burro mesmo. =(
-
GABRUEL
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Jun 17, 2011 15:32
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: 8ª série
- Andamento: cursando
por Molina » Sáb Jun 25, 2011 16:21
Boa tarde.
GABRUEL escreveu:x=0,3333...
10x=3,3333...
Subtraindo temos,
9x=3
Como assim 9x? da onde surgiu?
Faça a subtração:
10x = 3,3333...
x = 0,3333...9x = 3,000...
x = 3/9Perceba que todos os 3's depois da vírgula vão se cancelar.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por FilipeCaceres » Sáb Jun 25, 2011 16:21
Não te preocupa amigo estamos aqui para lhe ajudar,
Veja com mais calma o que eu fiz,

significa que temos "infinitos" números 3, certo?
Se nós multiplicar por 10 iremos descolar a vírgula em 1 unidade, ficando assim,

e mesmo assim continuaremos tendo "infinitos" números 3.

certo? Apenas separei a parte inteira da parte fracionária.
Assim temos,

Agora substraia um do outro, assim temos,




Agora espero que você tenha intendido.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por GABRUEL » Sáb Jun 25, 2011 16:29
Poxa, muito bem explicado Filipe.
Agora sim eu entendi hehehe...
A cada vez que tiver 1/9 ou 1/7 só multiplicar por 10
e quando for 61/493 exemplo multiplica por 100.
Valeu mesmo filipe!
Abraço
-
GABRUEL
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sex Jun 17, 2011 15:32
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: 8ª série
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Conjunto vazio está dentro de outro conjunto vazio?
por JDomingos » Dom Jul 20, 2014 07:41
- 1 Respostas
- 2085 Exibições
- Última mensagem por DanielFerreira

Dom Jul 20, 2014 12:14
Conjuntos
-
- Mostre que a é racional!
por Abelardo » Qui Abr 14, 2011 00:01
- 0 Respostas
- 1129 Exibições
- Última mensagem por Abelardo

Qui Abr 14, 2011 00:01
Álgebra Elementar
-
- [integral racional]
por brunaoliveira » Dom Mai 26, 2013 21:07
- 0 Respostas
- 932 Exibições
- Última mensagem por brunaoliveira

Dom Mai 26, 2013 21:07
Cálculo: Limites, Derivadas e Integrais
-
- número:racional
por Victor Gabriel » Seg Jun 17, 2013 16:40
- 0 Respostas
- 1038 Exibições
- Última mensagem por Victor Gabriel

Seg Jun 17, 2013 16:40
Teoria dos Números
-
- Integral Racional
por Fernandobertolaccini » Seg Jul 21, 2014 19:40
- 0 Respostas
- 818 Exibições
- Última mensagem por Fernandobertolaccini

Seg Jul 21, 2014 19:40
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.