por valeuleo » Qui Jun 23, 2011 12:02
Tem-se:

Tenho que calcular os intervalos de crescimento e decrescimento. Calculei a derivada e obtive:

(Certo?)
Preciso de ajuda para interpretar esse resultado, calcular os limites infinitos e montar o gráfico.
Grato
-
valeuleo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Mar 23, 2011 14:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: cursando
por MarceloFantini » Qui Jun 23, 2011 15:52
Qual foi a sua dificuldade? Lembre-se que uma função é crescente em um intervalo se sua derivada é maior que zero e decrescente se for menor que zero. Reflita: existe intervalo onde esta derivada seja zero ou menor que zero? Recomendo que você veja os canais do Luiz Aquino sobre cálculo, em especial os vídeos sobre crescimento e decrescimento.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por valeuleo » Qui Jun 23, 2011 16:18
MarceloFantini escreveu:Qual foi a sua dificuldade? Lembre-se que uma função é crescente em um intervalo se sua derivada é maior que zero e decrescente se for menor que zero. Reflita: existe intervalo onde esta derivada seja zero ou menor que zero? Recomendo que você veja os canais do Luiz Aquino sobre cálculo, em especial os vídeos sobre crescimento e decrescimento.
Até aí tudo bem, mas não consegui identificar os limites quando tendem ao infinito. No livro tem um gráfico que dá a entender que seja crescente "limitado a 2", isso que eu não estou conseguindo perceber. Eu já havia visto os vídeos do Luiz Aquino. Grato
-
valeuleo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Mar 23, 2011 14:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: cursando
por MarceloFantini » Qui Jun 23, 2011 16:21
Note que

. Primeiro, a função exponencial é maior que zero sempre, então é função é crescente em todos os pontos. Pense nos limitos infinitos: quando vai para mais infinito, a exponencial explode, e portanto o inverso dela tende a zero. Quando tende a menos infinito, a exponencial tende a zero, e portanto o inverso tende a infinito. Com isso, tente fazer novamente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sáb Jun 25, 2011 16:50
valeuleo escreveu:Até aí tudo bem, mas não consegui identificar os limites quando tendem ao infinito.
Você já assistiu a
vídeo-aula "08. Cálculo I - Limites Exponenciais"?
Nessa vídeo-aula é discutido o que acontece com as funções exponenciais no infinito.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- crescimento e decrescimento
por joandro » Dom Abr 13, 2014 11:30
- 1 Respostas
- 1354 Exibições
- Última mensagem por alienante

Ter Abr 29, 2014 17:27
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] crescimento e decrescimento
por fabriel » Ter Set 25, 2012 02:57
- 2 Respostas
- 1818 Exibições
- Última mensagem por fabriel

Ter Set 25, 2012 12:57
Cálculo: Limites, Derivadas e Integrais
-
- crescimento e decrescimento da função
por Ana Maria da Silva » Qua Out 02, 2013 10:18
- 1 Respostas
- 1072 Exibições
- Última mensagem por Bravim

Qui Out 03, 2013 05:32
Cálculo: Limites, Derivadas e Integrais
-
- Intervalos de crescimento e decrescimento da função
por valeuleo » Ter Jun 21, 2011 21:50
- 3 Respostas
- 3298 Exibições
- Última mensagem por LuizAquino

Ter Jun 21, 2011 22:44
Cálculo: Limites, Derivadas e Integrais
-
- decrescimento,crescimento e pontos criticos
por LILI2016 » Ter Abr 19, 2016 09:57
- 0 Respostas
- 1283 Exibições
- Última mensagem por LILI2016

Ter Abr 19, 2016 09:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.