por Civil UFSCar » Ter Jun 21, 2011 13:24
PESSOAL, PRECISO DE AJUDA, NÃO CONSIGO DEDUZIR A ÁREA DO CÍRCULO!
EU COMECEI A FAZER:
![\int_{0}^{r}\sqrt[]{r^2-x^2} \int_{0}^{r}\sqrt[]{r^2-x^2}](/latexrender/pictures/d1fa31445f8c21af9241aaf5104c17bb.png)
dai, fiz o triângulo todo certinho e ficou assim:
hipotenusa=R
cateto oposto=x
cateto adjacente=
![\sqrt[2]{r^2-x^2} \sqrt[2]{r^2-x^2}](/latexrender/pictures/5772fc40fcd962f247efdb7526bf542d.png)
então, achei que dentro da raiz ficaria (1-sen²)
(lembrando que eu multiplicaria por 4r no fim pois eu calcularia somente 1/4 do círculo, e o r eu tirei de dentro da integral)
mas e agora o que eu faço?? depois de mudar o x^2/r^2 por sen, eu não sei o que eu coloco no intervalo de integração.
Agradeço a atenção de todos! Obrigado
-
Civil UFSCar
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Jun 20, 2011 15:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia civil
- Andamento: cursando
por Molina » Ter Jun 21, 2011 15:02
O exercício quer que você deduza a fórmula da área do círculo através de integral?
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por LuizAquino » Ter Jun 21, 2011 16:08
Para resolver

, você deve usar a técnica de substituição trigonométrica.
No caso, faça a substituição

. Dessa forma,

.
Alterando o intervalo de integração, para u = 0 temos x = 0 e para u = pi/2 temos x = r.
Desse modo, fazendo todas as simplificações, você precisa resolver:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área, círculo trigonométrico, equação (UFU)
por Ananda » Qui Mar 06, 2008 11:51
- 6 Respostas
- 8952 Exibições
- Última mensagem por Ananda

Qui Mar 06, 2008 17:48
Trigonometria
-
- Taxa de variacao - area do circulo !
por andersoneng » Sex Jun 29, 2012 10:40
- 2 Respostas
- 2788 Exibições
- Última mensagem por Russman

Sex Jun 29, 2012 21:18
Cálculo: Limites, Derivadas e Integrais
-
- A área do círculo determinado pela...
por David_Estudante » Sáb Mai 25, 2013 17:47
- 0 Respostas
- 1038 Exibições
- Última mensagem por David_Estudante

Sáb Mai 25, 2013 17:47
Geometria Analítica
-
- Dedução
por Guilherme Carvalho » Qua Ago 10, 2011 22:40
- 1 Respostas
- 1563 Exibições
- Última mensagem por Molina

Qua Ago 10, 2011 23:49
Trigonometria
-
- Dedução
por silvanuno11 » Ter Mar 27, 2012 13:26
- 0 Respostas
- 929 Exibições
- Última mensagem por silvanuno11

Ter Mar 27, 2012 13:26
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.