• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor Fabio Cabral » Sex Jun 17, 2011 12:23

Até agora, eu tinha apenas pegado questões simples. Porém agora complicou. São 3 questões.
Nessas questões, ele já nos dá f'(x).

f'(x)=(x-1).{e}^{-x}

Encontrei:
- pontos críticos: x=1
- Intervalo onde é crescente ou decrescente: crescente para x>1 e decrescente para x <1 (correto?)
- Mínimo e máximo local:

Como encontrar?
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor LuizAquino » Sex Jun 17, 2011 12:56

Eu recomendo que assista as vídeo-aulas:
  • 19. Cálculo I - Máximo e Mínimo de Funções.
  • 20. Cálculo I - Crescimento, Decrescimento e Concavidade do Gráfico de Funções.
  • 21. Cálculo I - Teste da Primeira e da Segunda Derivada.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor Fabio Cabral » Dom Jun 19, 2011 15:37

Como encontro o ponto crítico de f'(x) ={x}^{-\frac{1}{3}}(x+2)

Não consigo simplificar essa expressão, de modo a conseguir encontrar o ponto crítico.

ps.: Essa ja é a derivada.

Grato.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor LuizAquino » Dom Jun 19, 2011 16:12

Qual é o texto original do exercício? É solicitado o ponto crítico da função f ou da função f'?

Se você deseja saber o ponto crítico de f, então você precisa resolver a equação f'(x) = 0.

Por outro lado, se você deseja saber o ponto crítico de f', então você precisa resolver a equação f''(x) = 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor Fabio Cabral » Dom Jun 19, 2011 16:17

Veja, Luíz.

Ele quer o ponto crítico da função f(x).
Mas ao invés de dar f(x) para encontrarmos f'(x), já deu f'(x) direto. Entende?

Sim, eu sei que para achar tenho que fazer f'(x)=0. Não consigo 'simplificar' essa expressão (digamos assim).
Já tentei passar pra raíz, fazer distributiva.. enfim, várias coisas.

Att,
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor LuizAquino » Dom Jun 19, 2011 16:25

Fabio Cabral escreveu:Ele quer o ponto crítico da função f(x).
Mas ao invés de dar f(x) para encontrarmos f'(x), já deu f'(x) direto. Entende?


Sendo assim, você deveria ter escrito algo como: "Como encontro o ponto crítico de f sabendo que f^\prime(x) ={x}^{-\frac{1}{3}}(x+2) ?".

Por favor, procure ser mais claro da próxima vez.

Fabio Cabral escreveu:Não consigo 'simplificar' essa expressão (digamos assim).
Já tentei passar pra raíz, fazer distributiva.. enfim, várias coisas.


Não há mistério algum. Você precisa resolver a equação {x}^{-\frac{1}{3}}(x+2) = 0 . Mas, essa equação é a mesma que \frac{x+2}{\sqrt[3]{x}} = 0 .

Agora, basta terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}