• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor Fabio Cabral » Sex Jun 17, 2011 12:23

Até agora, eu tinha apenas pegado questões simples. Porém agora complicou. São 3 questões.
Nessas questões, ele já nos dá f'(x).

f'(x)=(x-1).{e}^{-x}

Encontrei:
- pontos críticos: x=1
- Intervalo onde é crescente ou decrescente: crescente para x>1 e decrescente para x <1 (correto?)
- Mínimo e máximo local:

Como encontrar?
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor LuizAquino » Sex Jun 17, 2011 12:56

Eu recomendo que assista as vídeo-aulas:
  • 19. Cálculo I - Máximo e Mínimo de Funções.
  • 20. Cálculo I - Crescimento, Decrescimento e Concavidade do Gráfico de Funções.
  • 21. Cálculo I - Teste da Primeira e da Segunda Derivada.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor Fabio Cabral » Dom Jun 19, 2011 15:37

Como encontro o ponto crítico de f'(x) ={x}^{-\frac{1}{3}}(x+2)

Não consigo simplificar essa expressão, de modo a conseguir encontrar o ponto crítico.

ps.: Essa ja é a derivada.

Grato.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor LuizAquino » Dom Jun 19, 2011 16:12

Qual é o texto original do exercício? É solicitado o ponto crítico da função f ou da função f'?

Se você deseja saber o ponto crítico de f, então você precisa resolver a equação f'(x) = 0.

Por outro lado, se você deseja saber o ponto crítico de f', então você precisa resolver a equação f''(x) = 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor Fabio Cabral » Dom Jun 19, 2011 16:17

Veja, Luíz.

Ele quer o ponto crítico da função f(x).
Mas ao invés de dar f(x) para encontrarmos f'(x), já deu f'(x) direto. Entende?

Sim, eu sei que para achar tenho que fazer f'(x)=0. Não consigo 'simplificar' essa expressão (digamos assim).
Já tentei passar pra raíz, fazer distributiva.. enfim, várias coisas.

Att,
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Ponto Crítico / Intervalos Cres. Decres. / Min. e Máx.

Mensagempor LuizAquino » Dom Jun 19, 2011 16:25

Fabio Cabral escreveu:Ele quer o ponto crítico da função f(x).
Mas ao invés de dar f(x) para encontrarmos f'(x), já deu f'(x) direto. Entende?


Sendo assim, você deveria ter escrito algo como: "Como encontro o ponto crítico de f sabendo que f^\prime(x) ={x}^{-\frac{1}{3}}(x+2) ?".

Por favor, procure ser mais claro da próxima vez.

Fabio Cabral escreveu:Não consigo 'simplificar' essa expressão (digamos assim).
Já tentei passar pra raíz, fazer distributiva.. enfim, várias coisas.


Não há mistério algum. Você precisa resolver a equação {x}^{-\frac{1}{3}}(x+2) = 0 . Mas, essa equação é a mesma que \frac{x+2}{\sqrt[3]{x}} = 0 .

Agora, basta terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D