por michajunco » Seg Jun 13, 2011 00:20
Sabe-se que os gráficos das funções

são tangentes entre si. Nessas condições pode-se afirmar que o valor de m é?
Qual relação entre as funções eu devo fazer para definir o valor de m?

-
michajunco
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Abr 15, 2011 18:17
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Seg Jun 13, 2011 01:38
Boa noite!
Como f e g são tangentes elas só tem
UM ponto em comum. Você precisa encontrar um meio de encontrar uma função do tipo
2x + m que tenha apenas um ponto em comum a f(x).

Dica: iguale as funções obtendo uma equação do 2º grau e procure um Delta igual a 0 (para ter apenas uma
ÚNICA raiz).
Qualquer dúvida, informe!
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por michajunco » Seg Jun 13, 2011 14:29
Molina você é 10! muito obrigado mais um vez!

-
michajunco
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Abr 15, 2011 18:17
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área entre 3 ou mais funções
por eu_dick1 » Seg Nov 14, 2016 20:23
- 0 Respostas
- 2974 Exibições
- Última mensagem por eu_dick1

Seg Nov 14, 2016 20:23
Cálculo: Limites, Derivadas e Integrais
-
- Ponto em comum entre duas funções
por suziquim » Qui Mai 05, 2011 15:53
- 2 Respostas
- 2280 Exibições
- Última mensagem por suziquim

Qui Mai 05, 2011 17:21
Funções
-
- Relação entre funções, sequências e regressões
por Jhenrique » Qui Set 20, 2012 00:14
- 52 Respostas
- 39113 Exibições
- Última mensagem por MarceloFantini

Qua Out 31, 2012 19:50
Funções
-
- Relação entre funções com derivadas iguais
por matmatco » Sex Abr 12, 2013 23:00
- 8 Respostas
- 6179 Exibições
- Última mensagem por matmatco

Dom Abr 14, 2013 19:52
Cálculo: Limites, Derivadas e Integrais
-
- [Minimização de funções] Distância entre duas retas reversas
por guisaulo » Sáb Jun 08, 2013 14:48
- 2 Respostas
- 2483 Exibições
- Última mensagem por guisaulo

Sáb Jun 08, 2013 16:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.